BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 30352176)

  • 1. Organellar Proteomics and Phospho-Proteomics Reveal Subcellular Reorganization in Diet-Induced Hepatic Steatosis.
    Krahmer N; Najafi B; Schueder F; Quagliarini F; Steger M; Seitz S; Kasper R; Salinas F; Cox J; Uhlenhaut NH; Walther TC; Jungmann R; Zeigerer A; Borner GHH; Mann M
    Dev Cell; 2018 Oct; 47(2):205-221.e7. PubMed ID: 30352176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fasting and refeeding induces changes in the mouse hepatic lipid droplet proteome.
    Kramer DA; Quiroga AD; Lian J; Fahlman RP; Lehner R
    J Proteomics; 2018 Jun; 181():213-224. PubMed ID: 29698803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid Droplet Contact Sites in Health and Disease.
    Herker E; Vieyres G; Beller M; Krahmer N; Bohnert M
    Trends Cell Biol; 2021 May; 31(5):345-358. PubMed ID: 33546922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of lipid metabolism via a connection between the endoplasmic reticulum and lipid droplets.
    Suzuki M
    Anat Sci Int; 2017 Jan; 92(1):50-54. PubMed ID: 27822589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hepatic lipid droplet homeostasis and fatty liver disease.
    Seebacher F; Zeigerer A; Kory N; Krahmer N
    Semin Cell Dev Biol; 2020 Dec; 108():72-81. PubMed ID: 32444289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of the murine lipid droplet-associated proteome during diet-induced hepatic steatosis.
    Khan SA; Wollaston-Hayden EE; Markowski TW; Higgins L; Mashek DG
    J Lipid Res; 2015 Dec; 56(12):2260-72. PubMed ID: 26416795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential proteomics profiling identifies LDPs and biological functions in high-fat diet-induced fatty livers.
    Liu M; Ge R; Liu W; Liu Q; Xia X; Lai M; Liang L; Li C; Song L; Zhen B; Qin J; Ding C
    J Lipid Res; 2017 Apr; 58(4):681-694. PubMed ID: 28179399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman spectroscopy analysis of lipid droplets content, distribution and saturation level in Non-Alcoholic Fatty Liver Disease in mice.
    Kochan K; Maslak E; Krafft C; Kostogrys R; Chlopicki S; Baranska M
    J Biophotonics; 2015 Jul; 8(7):597-609. PubMed ID: 25346221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential expression of intermediate filaments in the process of developing hepatic steatosis.
    Park JE; Kim HT; Lee S; Lee YS; Choi UK; Kang JH; Choi SY; Kang TC; Choi MS; Kwon OS
    Proteomics; 2011 Jul; 11(14):2777-89. PubMed ID: 21674798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A unifying mathematical model of lipid droplet metabolism reveals key molecular players in the development of hepatic steatosis.
    Wallstab C; Eleftheriadou D; Schulz T; Damm G; Seehofer D; Borlak J; Holzhütter HG; Berndt N
    FEBS J; 2017 Oct; 284(19):3245-3261. PubMed ID: 28763157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catching Lipid Droplet Contacts by Proteomics.
    Krahmer N; Mann M
    Contact (Thousand Oaks); 2019 Jan; 2():2515256419859186. PubMed ID: 31355355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of hepassocin in the development of non-alcoholic fatty liver disease.
    Wu HT; Lu FH; Ou HY; Su YC; Hung HC; Wu JS; Yang YC; Wu CL; Chang CJ
    J Hepatol; 2013 Nov; 59(5):1065-72. PubMed ID: 23792031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatic lipid droplet biology: Getting to the root of fatty liver.
    Mashek DG; Khan SA; Sathyanarayan A; Ploeger JM; Franklin MP
    Hepatology; 2015 Sep; 62(3):964-7. PubMed ID: 25854913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eicosapentaenoic and docosahexaenoic acid-enriched high fat diet delays the development of fatty liver in mice.
    Soni NK; Nookaew I; Sandberg AS; Gabrielsson BG
    Lipids Health Dis; 2015 Jul; 14():74. PubMed ID: 26193881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sterol O-acyltransferase 2 chaperoned by apolipoprotein J facilitates hepatic lipid accumulation following viral and nutrient stresses.
    Sun HY; Chen TY; Tan YC; Wang CH; Young KC
    Commun Biol; 2021 May; 4(1):564. PubMed ID: 33980978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liver Perilipin 5 Expression Worsens Hepatosteatosis But Not Insulin Resistance in High Fat-Fed Mice.
    Trevino MB; Mazur-Hart D; Machida Y; King T; Nadler J; Galkina EV; Poddar A; Dutta S; Imai Y
    Mol Endocrinol; 2015 Oct; 29(10):1414-25. PubMed ID: 26296152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepatocyte vitamin D receptor regulates lipid metabolism and mediates experimental diet-induced steatosis.
    Bozic M; Guzmán C; Benet M; Sánchez-Campos S; García-Monzón C; Gari E; Gatius S; Valdivielso JM; Jover R
    J Hepatol; 2016 Oct; 65(4):748-757. PubMed ID: 27245430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lycopene inhibits hepatic steatosis via microRNA-21-induced downregulation of fatty acid-binding protein 7 in mice fed a high-fat diet.
    Ahn J; Lee H; Jung CH; Ha T
    Mol Nutr Food Res; 2012 Nov; 56(11):1665-74. PubMed ID: 22968990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Omic studies reveal the pathogenic lipid droplet proteins in non-alcoholic fatty liver disease.
    Zhang X; Wang Y; Liu P
    Protein Cell; 2017 Jan; 8(1):4-13. PubMed ID: 27757845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial gene polymorphisms alter hepatic cellular energy metabolism and aggravate diet-induced non-alcoholic steatohepatitis.
    Schröder T; Kucharczyk D; Bär F; Pagel R; Derer S; Jendrek ST; Sünderhauf A; Brethack AK; Hirose M; Möller S; Künstner A; Bischof J; Weyers I; Heeren J; Koczan D; Schmid SM; Divanovic S; Giles DA; Adamski J; Fellermann K; Lehnert H; Köhl J; Ibrahim S; Sina C
    Mol Metab; 2016 Apr; 5(4):283-295. PubMed ID: 27069868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.