These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 30352435)

  • 1. Influence of Laboratory Culture Media on in vitro Growth, Adhesion, and Biofilm Formation of Pseudomonas aeruginosa and Staphylococcus aureus.
    Wijesinghe G; Dilhari A; Gayani B; Kottegoda N; Samaranayake L; Weerasekera M
    Med Princ Pract; 2019; 28(1):28-35. PubMed ID: 30352435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coculture of P. aeruginosa and S. aureus on cell derived matrix - An in vitro model of biofilms in infected wounds.
    Gounani Z; Şen Karaman D; Venu AP; Cheng F; Rosenholm JM
    J Microbiol Methods; 2020 Aug; 175():105994. PubMed ID: 32593628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix Polysaccharides and SiaD Diguanylate Cyclase Alter Community Structure and Competitiveness of
    Chew SC; Yam JKH; Matysik A; Seng ZJ; Klebensberger J; Givskov M; Doyle P; Rice SA; Yang L; Kjelleberg S
    mBio; 2018 Nov; 9(6):. PubMed ID: 30401769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofilm-forming capacity of Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa from ocular infections.
    Hou W; Sun X; Wang Z; Zhang Y
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5624-31. PubMed ID: 22736609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution and Inhibition of Liposomes on Staphylococcus aureus and Pseudomonas aeruginosa Biofilm.
    Dong D; Thomas N; Thierry B; Vreugde S; Prestidge CA; Wormald PJ
    PLoS One; 2015; 10(6):e0131806. PubMed ID: 26125555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficacy of Lytic Phage Cocktails on
    Kifelew LG; Warner MS; Morales S; Thomas N; Gordon DL; Mitchell JG; Speck PG
    Viruses; 2020 May; 12(5):. PubMed ID: 32443619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal environmental and culture conditions allow the in vitro coexistence of Pseudomonas aeruginosa and Staphylococcus aureus in stable biofilms.
    Cendra MDM; Blanco-Cabra N; Pedraz L; Torrents E
    Sci Rep; 2019 Nov; 9(1):16284. PubMed ID: 31705015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prevention of biofilm formation by polyquaternary polymer.
    Dirain CO; Silva RC; Antonelli PJ
    Int J Pediatr Otorhinolaryngol; 2016 Sep; 88():157-62. PubMed ID: 27497405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The antimicrobial agent, Next-Science, inhibits the development of Staphylococcus aureus and Pseudomonas aeruginosa biofilms on tympanostomy tubes.
    Banerjee D; Tran PL; Colmer-Hamood JA; Wang JC; Myntti M; Cordero J; Hamood AN
    Int J Pediatr Otorhinolaryngol; 2015 Nov; 79(11):1909-14. PubMed ID: 26388185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of planktonic and sessile extracellular metabolic byproducts on Pseudomonas aeruginosa and Escherichia coli intra and interspecies relationships.
    Lopes SP; Machado I; Pereira MO
    J Ind Microbiol Biotechnol; 2011 Jan; 38(1):133-40. PubMed ID: 20811926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative flow chamber system for evaluating in vitro biofilms and the kinetics of S. aureus biofilm formation in human plasma media.
    Sutipornpalangkul W; Nishitani K; Schwarz EM
    BMC Microbiol; 2021 Nov; 21(1):314. PubMed ID: 34763655
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Orazi G; O'Toole GA
    mBio; 2017 Jul; 8(4):. PubMed ID: 28720732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro multispecies Lubbock chronic wound biofilm model.
    Sun Y; Dowd SE; Smith E; Rhoads DD; Wolcott RD
    Wound Repair Regen; 2008; 16(6):805-13. PubMed ID: 19128252
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Kiedrowski MR; Gaston JR; Kocak BR; Coburn SL; Lee S; Pilewski JM; Myerburg MM; Bomberger JM
    mSphere; 2018 Aug; 3(4):. PubMed ID: 30111629
    [No Abstract]   [Full Text] [Related]  

  • 15. Both Pseudomonas aeruginosa and Candida albicans Accumulate Greater Biomass in Dual-Species Biofilms under Flow.
    Kasetty S; Mould DL; Hogan DA; Nadell CD
    mSphere; 2021 Jun; 6(3):e0041621. PubMed ID: 34160236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of amylase and protease as antibiofilm agents by starch, casein, and yeast extract in Arthrobacter sp. CW01.
    Solihin J; Waturangi DE; Purwadaria T
    BMC Microbiol; 2021 Aug; 21(1):232. PubMed ID: 34425755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Influence of Chlorhexidine and Prontosan on Dual Species and Monospecies Biofilms Formed by Staphylococcus aureus and Pseudomonas aeruginosa].
    Kuznetsova MV; Encheva YA; Samartsev VA
    Antibiot Khimioter; 2015; 60(11-12):15-22. PubMed ID: 27141642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of biofilm-like structures formed by Pseudomonas aeruginosa in a synthetic mucus medium.
    Haley CL; Colmer-Hamood JA; Hamood AN
    BMC Microbiol; 2012 Aug; 12():181. PubMed ID: 22900764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between Staphylococcus aureus and Pseudomonas aeruginosa is beneficial for colonisation and pathogenicity in a mixed biofilm.
    Alves PM; Al-Badi E; Withycombe C; Jones PM; Purdy KJ; Maddocks SE
    Pathog Dis; 2018 Feb; 76(1):. PubMed ID: 29342260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Evaluation of biofilm formation by Staphylococcus aureus isolated from sputum of cystic fibrosis patients].
    Pietruczuk-Padzik A; Stefańska J; Semczuk K; Dzierzanowska D; Tyski S
    Med Dosw Mikrobiol; 2010; 62(1):1-8. PubMed ID: 20564965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.