BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30352605)

  • 1. Evaluation of bone marrow-derived mesenchymal stem cell quality from patients with congenital pseudoarthrosis of the tibia.
    Dilogo IH; Mujadid F; Nurhayati RW; Kurniawan A
    J Orthop Surg Res; 2018 Oct; 13(1):266. PubMed ID: 30352605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A regenerative approach for bone repair in congenital pseudarthrosis of the tibia associated or not associated with type 1 neurofibromatosis: correlation between laboratory findings and clinical outcome.
    Granchi D; Devescovi V; Baglio SR; Magnani M; Donzelli O; Baldini N
    Cytotherapy; 2012 Mar; 14(3):306-14. PubMed ID: 22103942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteogenic organoid for bone regeneration: Healing of bone defect in congenital pseudoarthrosis of the tibia.
    Cardier JE; Diaz-Solano D; Wittig O; Sierra G; Pulido J; Moreno R; Fuentes S; Leal F
    Int J Artif Organs; 2024 Feb; 47(2):107-114. PubMed ID: 38182554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RIA fractions contain mesenchymal stroma cells with high osteogenic potency.
    Kuehlfluck P; Moghaddam A; Helbig L; Child C; Wildemann B; Schmidmaier G;
    Injury; 2015 Dec; 46 Suppl 8():S23-32. PubMed ID: 26747914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone marrow mesenchymal stem cell aspirates from alternative sources: is the knee as good as the iliac crest?
    Narbona-Carceles J; Vaquero J; Suárez-Sancho S; Forriol F; Fernández-Santos ME
    Injury; 2014 Oct; 45 Suppl 4():S42-7. PubMed ID: 25384474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 17β-estradiol improves the efficacy of exploited autologous bone marrow-derived mesenchymal stem cells in non-union radial defect healing: A rabbit model.
    Zamani Mazdeh D; Mirshokraei P; Emami M; Mirshahi A; Karimi I
    Res Vet Sci; 2018 Jun; 118():11-18. PubMed ID: 29334646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparison of Bone Marrow Stromal Cells from Different Anatomical Locations for Evaluation of Their Suitability for Potential Clinical Applications].
    NeckaŘ P; Havlas V; LykovÁ D; BraniŠ J; KvÍzovÁ J; Bauer PO
    Acta Chir Orthop Traumatol Cech; 2020; 87(3):183-190. PubMed ID: 32773019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proliferative and osteogenic differentiation capacity of mesenchymal stromal cells: Influence of harvesting site and donor age.
    Prall WC; Saller MM; Scheumaier A; Tucholski T; Taha S; Böcker W; Polzer H
    Injury; 2018 Aug; 49(8):1504-1512. PubMed ID: 29941285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and Characterization of Multipotential Mesenchymal Stromal Cells from Congenital Pseudoarthrosis of the Tibia: Case Report.
    Diaz-Solano D; Wittig O; Mota JD; Cardier JE
    Anat Rec (Hoboken); 2015 Oct; 298(10):1804-14. PubMed ID: 26194170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expansion and angiogenic potential of mesenchymal stem cells from patients with critical limb ischemia.
    Brewster L; Robinson S; Wang R; Griffiths S; Li H; Peister A; Copland I; McDevitt T
    J Vasc Surg; 2017 Mar; 65(3):826-838.e1. PubMed ID: 26921003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological basis for the use of autologous bone marrow stromal cells in the treatment of congenital pseudarthrosis of the tibia.
    Granchi D; Devescovi V; Baglìo SR; Leonardi E; Donzelli O; Magnani M; Stilli S; Giunti A; Baldini N
    Bone; 2010 Mar; 46(3):780-8. PubMed ID: 19900596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of mesenchymal stem cells from the mandibular marrow aspirates.
    Lee BK; Choi SJ; Mack D; Oh SH
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2011 Dec; 112(6):e86-93. PubMed ID: 21872505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attempt to treat congenital pseudarthrosis of the tibia with mesenchymal stromal cell transplantation.
    Tikkanen J; Leskelä HV; Lehtonen ST; Vähäsarja V; Melkko J; Ahvenjärvi L; Pääkkö E; Väänänen K; Lehenkari P
    Cytotherapy; 2010 Sep; 12(5):593-604. PubMed ID: 20513166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical translation of a mesenchymal stromal cell-based therapy developed in a large animal model and two case studies of the treatment of atrophic pseudoarthrosis.
    Prat S; Gallardo-Villares S; Vives M; Carreño A; Caminal M; Oliver-Vila I; Chaverri D; Blanco M; Codinach M; Huguet P; Ramírez J; Pinto JA; Aguirre M; Coll R; Garcia-López J; Granell-Escobar F; Vives J
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e532-e540. PubMed ID: 27684058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vertebral body versus iliac crest bone marrow as a source of multipotential stromal cells: Comparison of processing techniques, tri-lineage differentiation and application on a scaffold for spine fusion.
    Fragkakis EM; El-Jawhari JJ; Dunsmuir RA; Millner PA; Rao AS; Henshaw KT; Pountos I; Jones E; Giannoudis PV
    PLoS One; 2018; 13(5):e0197969. PubMed ID: 29795650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Umbilical cord mesenchymal stem cells combined with secretome for treating congenital pseudarthrosis of the Tibia: a case series.
    Kurniawan A; Ivansyah MD; Dilogo IH; Hutami WD
    Eur J Orthop Surg Traumatol; 2023 Oct; 33(7):2881-2888. PubMed ID: 36879164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of non-hypertrophic pseudoarthrosis of long bones with a Tissue Engineered Product loaded with autologous bone marrow-derived Mesenchymal Stromal Cells: Results from a phase IIa, prospective, randomized, parallel, pilot clinical trial comparing to iliac crest autograft.
    Chaverri D; Gallardo-Villares S; Pinto JA; Rodríguez L; Codinach M; García-López J; Querol S; Coll R; Vives J; Granell-Escobar F
    Injury; 2024 Jul; 55(7):111596. PubMed ID: 38797000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolating Pediatric Mesenchymal Stem Cells with Enhanced Expansion and Differentiation Capabilities.
    Knuth CA; Kiernan CH; Palomares Cabeza V; Lehmann J; Witte-Bouma J; Ten Berge D; Brama PA; Wolvius EB; Strabbing EM; Koudstaal MJ; Narcisi R; Farrell E
    Tissue Eng Part C Methods; 2018 Jun; 24(6):313-321. PubMed ID: 29631483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identity, proliferation capacity, genomic stability and novel senescence markers of mesenchymal stem cells isolated from low volume of human bone marrow.
    Kundrotas G; Gasperskaja E; Slapsyte G; Gudleviciene Z; Krasko J; Stumbryte A; Liudkeviciene R
    Oncotarget; 2016 Mar; 7(10):10788-802. PubMed ID: 26910916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue.
    Xu L; Liu Y; Sun Y; Wang B; Xiong Y; Lin W; Wei Q; Wang H; He W; Wang B; Li G
    Stem Cell Res Ther; 2017 Dec; 8(1):275. PubMed ID: 29208029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.