BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30352730)

  • 1. Lignin materials for adsorption: Current trend, perspectives and opportunities.
    Supanchaiyamat N; Jetsrisuparb K; Knijnenburg JTN; Tsang DCW; Hunt AJ
    Bioresour Technol; 2019 Jan; 272():570-581. PubMed ID: 30352730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of calcium oxalate-bromopyrogallol red inclusion sorbent and application to treatment of cationic dye and heavy metal wastewaters.
    Wang HY; Gao HW
    Environ Sci Pollut Res Int; 2009 May; 16(3):339-47. PubMed ID: 18998184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon composite lignin-based adsorbents for the adsorption of dyes.
    Wang X; Jiang C; Hou B; Wang Y; Hao C; Wu J
    Chemosphere; 2018 Sep; 206():587-596. PubMed ID: 29778084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recycling of agricultural solid waste, coir pith: removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon.
    Namasivayam C; Sangeetha D
    J Hazard Mater; 2006 Jul; 135(1-3):449-52. PubMed ID: 16406295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Materials from Technical Lignins: Recent Advances.
    Puziy AM; Poddubnaya OI; Sevastyanova O
    Top Curr Chem (Cham); 2018 Jul; 376(4):33. PubMed ID: 29995273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activated parthenium carbon as an adsorbent for the removal of dyes and heavy metal ions from aqueous solution.
    Rajeshwarisivaraj ; Subburam V
    Bioresour Technol; 2002 Nov; 85(2):205-6. PubMed ID: 12227547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lignin-based hydrogels with "super-swelling" capacities for dye removal.
    Domínguez-Robles J; Peresin MS; Tamminen T; Rodríguez A; Larrañeta E; Jääskeläinen AS
    Int J Biol Macromol; 2018 Aug; 115():1249-1259. PubMed ID: 29655884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lignin--from natural adsorbent to activated carbon: a review.
    Suhas ; Carrott PJ; Ribeiro Carrott MM
    Bioresour Technol; 2007 Sep; 98(12):2301-12. PubMed ID: 17055259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects.
    Cao L; Yu IKM; Liu Y; Ruan X; Tsang DCW; Hunt AJ; Ok YS; Song H; Zhang S
    Bioresour Technol; 2018 Dec; 269():465-475. PubMed ID: 30146182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in lignin-based biosorbents for sustainable wastewater treatment.
    Zhang H; Xue K; Wang B; Ren W; Sun D; Shao C; Sun R
    Bioresour Technol; 2024 Mar; 395():130347. PubMed ID: 38242243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water.
    Du Z; Zheng T; Wang P; Hao L; Wang Y
    Bioresour Technol; 2016 Feb; 201():41-9. PubMed ID: 26630582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignin-containing cellulose nanocrystals/sodium alginate beads as highly effective adsorbents for cationic organic dyes.
    Ma M; Liu Z; Hui L; Shang Z; Yuan S; Dai L; Liu P; Liu X; Ni Y
    Int J Biol Macromol; 2019 Oct; 139():640-646. PubMed ID: 31381920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent.
    Al-Ghouti MA; Li J; Salamh Y; Al-Laqtah N; Walker G; Ahmad MN
    J Hazard Mater; 2010 Apr; 176(1-3):510-20. PubMed ID: 19959281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomass-Based Hydrothermal Carbons for the Contaminants Removal of Wastewater: A Mini-Review.
    Wang Y; Xu Y; Lu X; Liu K; Li F; Wang B; Wang Q; Zhang X; Yang G; Chen J
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical Porous and High Surface Area Tubular Carbon as Dye Adsorbent and Capacitor Electrode.
    Chen L; Ji T; Brisbin L; Zhu J
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):12230-7. PubMed ID: 25980528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of Procion Blue MX-R dye from aqueous solutions by lignin chemically modified with aluminium and manganese.
    Adebayo MA; Prola LD; Lima EC; Puchana-Rosero MJ; Cataluña R; Saucier C; Umpierres CS; Vaghetti JC; da Silva LG; Ruggiero R
    J Hazard Mater; 2014 Mar; 268():43-50. PubMed ID: 24462989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous control of metals and organics using a fluidized bed adsorber.
    Chiang BC; Wey MY; Yang WY; Lu CY
    Environ Technol; 2003 Sep; 24(9):1103-15. PubMed ID: 14599144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal adsorption onto agro-based waste materials: a review.
    Demirbas A
    J Hazard Mater; 2008 Sep; 157(2-3):220-9. PubMed ID: 18291580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water.
    Huang L; He M; Chen B; Hu B
    Chemosphere; 2018 May; 199():435-444. PubMed ID: 29453070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergic adsorption in the simultaneous removal of acid blue 25 and heavy metals from water using a Ca(PO3)2-modified carbon.
    Tovar-Gómez R; Rivera-Ramírez DA; Hernández-Montoya V; Bonilla-Petriciolet A; Durán-Valle CJ; Montes-Morán MA
    J Hazard Mater; 2012 Jan; 199-200():290-300. PubMed ID: 22118844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.