These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30352875)

  • 81. Expression level of Rubisco activase negatively correlates with Rubisco content in transgenic rice.
    Fukayama H; Mizumoto A; Ueguchi C; Katsunuma J; Morita R; Sasayama D; Hatanaka T; Azuma T
    Photosynth Res; 2018 Sep; 137(3):465-474. PubMed ID: 29846871
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments.
    Salvucci ME; Crafts-Brandner SJ
    Plant Physiol; 2004 Apr; 134(4):1460-70. PubMed ID: 15084731
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Analysis of the cooperative ATPase cycle of the AAA+ chaperone ClpB from Thermus thermophilus by using ordered heterohexamers with an alternating subunit arrangement.
    Yamasaki T; Oohata Y; Nakamura T; Watanabe YH
    J Biol Chem; 2015 Apr; 290(15):9789-800. PubMed ID: 25713084
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Multiple-step kinetic mechanism of DNA-independent ATP binding and hydrolysis by Escherichia coli replicative helicase DnaB protein: quantitative analysis using the rapid quench-flow method.
    Rajendran S; Jezewska MJ; Bujalowski W
    J Mol Biol; 2000 Nov; 303(5):773-95. PubMed ID: 11061975
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Inhibition of ribulose bisphosphate carboxylase assembly by antibody to a binding protein.
    Cannon S; Wang P; Roy H
    J Cell Biol; 1986 Oct; 103(4):1327-35. PubMed ID: 3771637
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Direct evidence that a conserved arginine in RuvB AAA+ ATPase acts as an allosteric effector for the ATPase activity of the adjacent subunit in a hexamer.
    Hishida T; Han YW; Fujimoto S; Iwasaki H; Shinagawa H
    Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9573-7. PubMed ID: 15210950
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The modulation of enzyme reaction rates within multi-enzyme complexes. 2. Information transfer within a chloroplast multi-enzyme complex containing ribulose bisphosphate carboxylase-oxygenase.
    Gontero B; Giudici-Orticoni MT; Ricard J
    Eur J Biochem; 1994 Dec; 226(3):999-1006. PubMed ID: 7813491
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Rubisco accumulation factor 1 (Raf1) plays essential roles in mediating Rubisco assembly and carboxysome biogenesis.
    Huang F; Kong WW; Sun Y; Chen T; Dykes GF; Jiang YL; Liu LN
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):17418-17428. PubMed ID: 32636267
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Alteration of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase activase activities by site-directed mutagenesis.
    Shen JB; Ogren WL
    Plant Physiol; 1992 Jul; 99(3):1201-7. PubMed ID: 16668989
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The CoxD protein, a novel AAA+ ATPase involved in metal cluster assembly: hydrolysis of nucleotide-triphosphates and oligomerization.
    Maisel T; Joseph S; Mielke T; Bürger J; Schwarzinger S; Meyer O
    PLoS One; 2012; 7(10):e47424. PubMed ID: 23077613
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Alteration of the adenine nucleotide response and increased Rubisco activation activity of Arabidopsis rubisco activase by site-directed mutagenesis.
    Kallis RP; Ewy RG; Portis AR
    Plant Physiol; 2000 Jul; 123(3):1077-86. PubMed ID: 10889257
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The unique pentagonal structure of an archaeal Rubisco is essential for its high thermostability.
    Maeda N; Kanai T; Atomi H; Imanaka T
    J Biol Chem; 2002 Aug; 277(35):31656-62. PubMed ID: 12070156
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Evolution of Rubisco activase gene in plants.
    Nagarajan R; Gill KS
    Plant Mol Biol; 2018 Jan; 96(1-2):69-87. PubMed ID: 29139059
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Assessing heterogeneity in oligomeric AAA+ machines.
    Sysoeva TA
    Cell Mol Life Sci; 2017 Mar; 74(6):1001-1018. PubMed ID: 27669691
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Comparison of the intrinsic disorder propensities of the RuBisCO activase enzyme from the motile and non-motile oceanic green microalgae.
    Sena L; Uversky VN
    Intrinsically Disord Proteins; 2016; 4(1):e1253526. PubMed ID: 28232899
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Stoichiometry of Nucleotide Binding to Proteasome AAA+ ATPase Hexamer Established by Native Mass Spectrometry.
    Yu Y; Liu H; Yu Z; Witkowska HE; Cheng Y
    Mol Cell Proteomics; 2020 Dec; 19(12):1997-2015. PubMed ID: 32883800
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers.
    Hansson A; Willows RD; Roberts TH; Hansson M
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13944-9. PubMed ID: 12357035
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Deep-branching evolutionary intermediates reveal structural origins of form I rubisco.
    Liu AK; Kaeser B; Chen L; West-Roberts J; Taylor-Kearney LJ; Lavy A; Günzing D; Li WJ; Hammel M; Nogales E; Banfield JF; Shih PM
    Curr Biol; 2023 Dec; 33(24):5316-5325.e3. PubMed ID: 37979578
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Electronic structure benchmark calculations of CO
    Douglas-Gallardo OA; Shepherd I; Bennie SJ; Ranaghan KE; Mulholland AJ; Vöhringer-Martinez E
    J Comput Chem; 2020 Sep; 41(24):2151-2157. PubMed ID: 32640497
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The discovery of rubisco.
    Sharkey TD
    J Exp Bot; 2023 Jan; 74(2):510-519. PubMed ID: 35689795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.