These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103. Structure and functional annotation of hypothetical proteins having putative Rubisco activase function from Vitis vinifera. Kumar S Bioinformation; 2015; 11(1):11-6. PubMed ID: 25780274 [TBL] [Abstract][Full Text] [Related]
104. Hexameric structure of the ATPase motor subunit of magnesium chelatase in chlorophyll biosynthesis. Gao YS; Wang YL; Wang X; Liu L Protein Sci; 2020 Apr; 29(4):1040-1046. PubMed ID: 31891428 [TBL] [Abstract][Full Text] [Related]
105. Burst analysis spectroscopy: a versatile single-particle approach for studying distributions of protein aggregates and fluorescent assemblies. Puchalla J; Krantz K; Austin R; Rye H Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14400-5. PubMed ID: 18780782 [TBL] [Abstract][Full Text] [Related]
106. Hexamers of the type II secretion ATPase GspE from Vibrio cholerae with increased ATPase activity. Lu C; Turley S; Marionni ST; Park YJ; Lee KK; Patrick M; Shah R; Sandkvist M; Bush MF; Hol WG Structure; 2013 Sep; 21(9):1707-17. PubMed ID: 23954505 [TBL] [Abstract][Full Text] [Related]
107. Delayed Osmotic Effect on in Vitro Assembly of RuBisCO : Relationship to Large Subunit-Binding Protein Complex Dissociation. Chaudhari P; Roy H Plant Physiol; 1989 Apr; 89(4):1366-71. PubMed ID: 16666711 [TBL] [Abstract][Full Text] [Related]
108. Dissection of the ATPase active site of McdA reveals the sequential steps essential for carboxysome distribution. Hakim P; Hoang Y; Vecchiarelli AG Mol Biol Cell; 2021 Oct; 32(20):ar11. PubMed ID: 34406783 [TBL] [Abstract][Full Text] [Related]
109. A Fijivirus Major Viroplasm Protein Shows RNA-Stimulated ATPase Activity by Adopting Pentameric and Hexameric Assemblies of Dimers. Llauger G; Melero R; Monti D; Sycz G; Huck-Iriart C; Cerutti ML; Klinke S; Mikkelsen E; Tijman A; Arranz R; Alfonso V; Arellano SM; Goldbaum FA; Sterckx YGJ; Carazo JM; Kaufman SB; Dans PD; Del Vas M; Otero LH mBio; 2023 Apr; 14(2):e0002323. PubMed ID: 36786587 [TBL] [Abstract][Full Text] [Related]
110. Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling. Daumke O; Lundmark R; Vallis Y; Martens S; Butler PJ; McMahon HT Nature; 2007 Oct; 449(7164):923-7. PubMed ID: 17914359 [No Abstract] [Full Text] [Related]
111. Molecular and structural basis of an ATPase-nuclease dual-enzyme anti-phage defense complex. An Q; Wang Y; Tian Z; Han J; Li J; Liao F; Yu F; Zhao H; Wen Y; Zhang H; Deng Z Cell Res; 2024 Aug; 34(8):545-555. PubMed ID: 38834762 [TBL] [Abstract][Full Text] [Related]
112. Kinetic Analysis of AAA+ Translocases by Combined Fluorescence and Anisotropy Methods. Scull NW; Lucius AL Biophys J; 2020 Oct; 119(7):1335-1350. PubMed ID: 32997959 [TBL] [Abstract][Full Text] [Related]
113. Phase-separating pyrenoid proteins form complexes in the dilute phase. He G; GrandPre T; Wilson H; Zhang Y; Jonikas MC; Wingreen NS; Wang Q Commun Biol; 2023 Jan; 6(1):19. PubMed ID: 36611062 [TBL] [Abstract][Full Text] [Related]
114. Structural plasticity enables evolution and innovation of RuBisCO assemblies. Liu AK; Pereira JH; Kehl AJ; Rosenberg DJ; Orr DJ; Chu SKS; Banda DM; Hammel M; Adams PD; Siegel JB; Shih PM Sci Adv; 2022 Aug; 8(34):eadc9440. PubMed ID: 36026446 [TBL] [Abstract][Full Text] [Related]
115. Expanding the Concepts in Protein Structure-Function Relationships and Enzyme Kinetics: Teaching using Morpheeins. Lawrence SH; Jaffe EK Biochem Mol Biol Educ; 2008; 36(4):274-283. PubMed ID: 19578473 [TBL] [Abstract][Full Text] [Related]
116. Delineating specific regions of N- terminal domain of T3SS ATPase YsaN of Kumar R; Roy C; Datta S Front Mol Biosci; 2022; 9():967974. PubMed ID: 36158578 [TBL] [Abstract][Full Text] [Related]
117. Solid-State Self-Assembly: Exclusive Formation and Dynamic Interconversion of Discrete Cyclic Assemblies Based on Molecular Tweezers. Okabe K; Yamashina M; Tsurumaki E; Uekusa H; Toyota S J Org Chem; 2024 Jul; 89(13):9488-9495. PubMed ID: 38913719 [TBL] [Abstract][Full Text] [Related]
118. C4 grasses employ distinct strategies to acclimate rubisco activase to heat stress. Stainbrook SC; Aubuchon LN; Chen A; Johnson E; Si A; Walton L; Ahrendt AJ; Strenkert D; Jez JM Biosci Rep; 2024 Oct; 44(10):. PubMed ID: 39361893 [TBL] [Abstract][Full Text] [Related]
119. Molecular mechanism of Rubisco activase: Dynamic assembly and Rubisco remodeling. Waheeda K; Kitchel H; Wang Q; Chiu PL Front Mol Biosci; 2023; 10():1125922. PubMed ID: 36845545 [TBL] [Abstract][Full Text] [Related]
120. Red Rubiscos and opportunities for engineering green plants. Oh ZG; Askey B; Gunn LH J Exp Bot; 2023 Jan; 74(2):520-542. PubMed ID: 36055563 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]