BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30353009)

  • 1. A microfabricated nerve-on-a-chip platform for rapid assessment of neural conduction in explanted peripheral nerve fibers.
    Gribi S; du Bois de Dunilac S; Ghezzi D; Lacour SP
    Nat Commun; 2018 Oct; 9(1):4403. PubMed ID: 30353009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes.
    Vasudevan S; Patel K; Welle C
    J Neural Eng; 2017 Feb; 14(1):016008. PubMed ID: 27934777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of the nerve conduction velocity selective recording technique using a multi-contact cuff electrode.
    Yoshida K; Kurstjens GA; Hennings K
    Med Eng Phys; 2009 Dec; 31(10):1261-70. PubMed ID: 19762269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo electrical conductivity across critical nerve gaps using poly(3,4-ethylenedioxythiophene)-coated neural interfaces.
    Egeland BM; Urbanchek MG; Peramo A; Richardson-Burns SM; Martin DC; Kipke DR; Kuzon WM; Cederna PS
    Plast Reconstr Surg; 2010 Dec; 126(6):1865-1873. PubMed ID: 20700080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The electrophysiological consequences of electrode impalement of peripheral nerves in the rat.
    Rice AS; McMahon SB; Wall PD
    Brain Res; 1993 Dec; 631(2):221-6. PubMed ID: 8131050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering a 3D functional human peripheral nerve in vitro using the Nerve-on-a-Chip platform.
    Sharma AD; McCoy L; Jacobs E; Willey H; Behn JQ; Nguyen H; Bolon B; Curley JL; Moore MJ
    Sci Rep; 2019 Jun; 9(1):8921. PubMed ID: 31222141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-invasive determination of the distribution of the conduction velocity of the large-diameter fibers in peripheral nerves. Estimate based upon a single recording of the stimulus response of the nerve.
    Pollak VA; Ferbert A; Cui J; Schulze-Clewing J
    Med Prog Technol; 1992-1993; 18(4):217-25. PubMed ID: 1339944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in-vitro system for closed loop neuromodulation of peripheral nerves.
    Ribeiro M; Jabban L; Andris FR; Dos Santos Nielsen TGN; Rocha PRF; Metcalfe B
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2361-2364. PubMed ID: 36086359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium Channel Na
    Klein AH; Vyshnevska A; Hartke TV; De Col R; Mankowski JL; Turnquist B; Bosmans F; Reeh PW; Schmelz M; Carr RW; Ringkamp M
    J Neurosci; 2017 May; 37(20):5204-5214. PubMed ID: 28450535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aging effects on conduction velocities of myelinated and unmyelinated fibers of peripheral nerves.
    Sato A; Sato Y; Suzuki H
    Neurosci Lett; 1985 Jan; 53(1):15-20. PubMed ID: 3991047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microchannel electrodes for recording and stimulation: in vitro evaluation.
    FitzGerald JJ; Lacour SP; McMahon SB; Fawcett JW
    IEEE Trans Biomed Eng; 2009 May; 56(5):1524-34. PubMed ID: 19203882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of the effects of occupational and environmental factors on all faster and slower large myelinated nerve fibers: a study of the distribution of nerve conduction velocities.
    Araki S; Yokoyama K; Murata K
    Environ Res; 1993 Aug; 62(2):325-32. PubMed ID: 8344239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel method for characterization of peripheral nerve fiber size distributions by group delay measurements and simulated annealing optimization.
    Szlavik RB; Turner GE
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5008-14. PubMed ID: 19163842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Test for analysing nerve conduction velocity].
    Nakanishi T
    Rinsho Shinkeigaku; 1991 Dec; 31(12):1326-9. PubMed ID: 1817800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model for compound action potentials and currents in a nerve bundle. I: The forward calculation.
    Wijesinghe RS; Gielen FL; Wikswo JP
    Ann Biomed Eng; 1991; 19(1):43-72. PubMed ID: 2035910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensory nerve conduction velocity of the caudal cutaneous sural and medial cutaneous antebrachial nerves of adult horses.
    Whalen LR; Wheeler DW; LeCouteur RA; Yovich JV; Boggie LC; Grandy JL; Kainer RA
    Am J Vet Res; 1994 Jul; 55(7):892-7. PubMed ID: 7978624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Molecular and Morphologic Structures That Make Saltatory Conduction Possible in Peripheral Nerve.
    Carroll SL
    J Neuropathol Exp Neurol; 2017 Apr; 76(4):255-257. PubMed ID: 28340093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of human peripheral nerve fibre groups by conduction velocity and nerve fibre diameter is preserved following spinal cord lesion.
    Schalow G; Zäch GA; Warzok R
    J Auton Nerv Syst; 1995 Apr; 52(2-3):125-50. PubMed ID: 7615895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential fiber-specific block of nerve conduction in mammalian peripheral nerves using kilohertz electrical stimulation.
    Patel YA; Butera RJ
    J Neurophysiol; 2015 Jun; 113(10):3923-9. PubMed ID: 25878155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronically implanted epineural electrodes for repeated assessment of nerve conduction velocity and compound action potential amplitude in rodents.
    Murphy B; Krieger C; Hoffer JA
    J Neurosci Methods; 2004 Jan; 132(1):25-33. PubMed ID: 14687672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.