BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 30353035)

  • 1. Locus Coeruleus as a vigilance centre for active inspiration and expiration in rats.
    Magalhães KS; Spiller PF; da Silva MP; Kuntze LB; Paton JFR; Machado BH; Moraes DJA
    Sci Rep; 2018 Oct; 8(1):15654. PubMed ID: 30353035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A6 neurons simultaneously modulate active expiration and upper airway resistance in rats.
    Magalhães KS; de Britto AA; Paton JFR; Moraes DJA
    Exp Physiol; 2020 Jan; 105(1):53-64. PubMed ID: 31675759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-chemosensitive parafacial neurons simultaneously regulate active expiration and airway patency under hypercapnia in rats.
    de Britto AA; Moraes DJ
    J Physiol; 2017 Mar; 595(6):2043-2064. PubMed ID: 28004411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Participation of locus coeruleus in breathing control in female rats.
    de Carvalho D; Patrone LGA; Marques DA; Vicente MC; Szawka RE; Anselmo-Franci JA; Bícego KC; Gargaglioni LH
    Respir Physiol Neurobiol; 2017 Nov; 245():29-36. PubMed ID: 28687484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The parafacial respiratory group and the control of active expiration.
    Pisanski A; Pagliardini S
    Respir Physiol Neurobiol; 2019 Jul; 265():153-160. PubMed ID: 29933053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypercapnia and hypoxia: chemoreceptor-mediated control of locus coeruleus neurons and splanchnic, sympathetic nerves.
    Elam M; Yao T; Thorén P; Svensson TH
    Brain Res; 1981 Oct; 222(2):373-81. PubMed ID: 6793212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Essential role of Phox2b-expressing ventrolateral brainstem neurons in the chemosensory control of inspiration and expiration.
    Marina N; Abdala AP; Trapp S; Li A; Nattie EE; Hewinson J; Smith JC; Paton JF; Gourine AV
    J Neurosci; 2010 Sep; 30(37):12466-73. PubMed ID: 20844141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypercapnia-induced active expiration increases in sleep and enhances ventilation in unanaesthetized rats.
    Leirão IP; Silva CA; Gargaglioni LH; da Silva GSF
    J Physiol; 2018 Aug; 596(15):3271-3283. PubMed ID: 28776683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C1 neurons are part of the circuitry that recruits active expiration in response to the activation of peripheral chemoreceptors.
    Malheiros-Lima MR; Silva JN; Souza FC; Takakura AC; Moreira TS
    Elife; 2020 Jan; 9():. PubMed ID: 31971507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of augmented muscle vasoconstrictor drive following asphyxic apnoea in awake human subjects is not affected by relief of chemical drive.
    Seitz MJ; Brown R; Macefield VG
    Exp Physiol; 2013 Feb; 98(2):405-14. PubMed ID: 22923230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic and synaptic mechanisms controlling the expiratory activity of excitatory lateral parafacial neurones of rats.
    Magalhães KS; da Silva MP; Mecawi AS; Paton JFR; Machado BH; Moraes DJA
    J Physiol; 2021 Nov; 599(21):4925-4948. PubMed ID: 34510468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orexinergic system in the locus coeruleus modulates the CO2 ventilatory response.
    Vicente MC; Dias MB; Fonseca EM; Bícego KC; Gargaglioni LH
    Pflugers Arch; 2016 May; 468(5):763-74. PubMed ID: 26832348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locus coeruleus noradrenergic neurons and CO2 drive to breathing.
    Biancardi V; Bícego KC; Almeida MC; Gargaglioni LH
    Pflugers Arch; 2008 Mar; 455(6):1119-28. PubMed ID: 17851683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential modulation of active expiration during hypercapnia by the medullary raphe in unanesthetized rats.
    Leirão IP; Zoccal DB; Gargaglioni LH; da Silva GSF
    Pflugers Arch; 2020 Nov; 472(11):1563-1576. PubMed ID: 32914212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Kölliker-Fuse nucleus orchestrates the timing of expiratory abdominal nerve bursting.
    Barnett WH; Jenkin SEM; Milsom WK; Paton JFR; Abdala AP; Molkov YI; Zoccal DB
    J Neurophysiol; 2018 Feb; 119(2):401-412. PubMed ID: 29070631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State-dependent control of breathing by the retrotrapezoid nucleus.
    Burke PG; Kanbar R; Basting TM; Hodges WM; Viar KE; Stornetta RL; Guyenet PG
    J Physiol; 2015 Jul; 593(13):2909-26. PubMed ID: 25820491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A closed-loop model of the respiratory system: focus on hypercapnia and active expiration.
    Molkov YI; Shevtsova NA; Park C; Ben-Tal A; Smith JC; Rubin JE; Rybak IA
    PLoS One; 2014; 9(10):e109894. PubMed ID: 25302708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticotropin-releasing factor in the locus coeruleus as a modulator of ventilation in rats.
    Incheglu JM; Bícego KC; Gargaglioni LH
    Respir Physiol Neurobiol; 2016 Nov; 233():73-80. PubMed ID: 27543446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholinergic modulation of the parafacial respiratory group.
    Boutin RC; Alsahafi Z; Pagliardini S
    J Physiol; 2017 Feb; 595(4):1377-1392. PubMed ID: 27808424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GABAergic neurons of the medullary raphe regulate active expiration during hypercapnia.
    Silva JDN; Oliveira LM; Souza FC; Moreira TS; Takakura AC
    J Neurophysiol; 2020 May; 123(5):1933-1943. PubMed ID: 32267190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.