These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 30353035)

  • 21. Role of the locus coeruleus catecholaminergic neurons in the chemosensory control of breathing in a Parkinson's disease model.
    Oliveira LM; Tuppy M; Moreira TS; Takakura AC
    Exp Neurol; 2017 Jul; 293():172-180. PubMed ID: 28431876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Role of Ca
    Imber AN; Patrone LGA; Li KY; Gargaglioni LH; Putnam RW
    Neuroscience; 2018 Jun; 381():59-78. PubMed ID: 29698749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibitory control of active expiration by the Bötzinger complex in rats.
    Flor KC; Barnett WH; Karlen-Amarante M; Molkov YI; Zoccal DB
    J Physiol; 2020 Nov; 598(21):4969-4994. PubMed ID: 32621515
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical perspectives on central chemosensitivity: CO2/H+-sensitive neurons in the locus coeruleus.
    Quintero MC; Putnam RW; Cordovez JM
    PLoS Comput Biol; 2017 Dec; 13(12):e1005853. PubMed ID: 29267284
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of hypercapnia and hypoxia on single hypoglossal nerve fiber activity.
    Mitra J; Cherniack NS
    Respir Physiol; 1983 Oct; 54(1):55-66. PubMed ID: 6417750
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of hypercapnia and hypoxia on inspiratory and expiratory diaphragmatic activity in conscious cats.
    Bonora M; Boule M
    J Appl Physiol (1985); 1994 Oct; 77(4):1644-52. PubMed ID: 7836181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of sex hormones in hypercapnia-induced activation of the locus coeruleus in female and male rats.
    de Carvalho D; Marques DA; Bernuci MP; Leite CM; Araújo-Lopes R; Anselmo-Franci J; Bícego KC; Szawka RE; Gargaglioni LH
    Neuroscience; 2016 Jan; 313():36-45. PubMed ID: 26601772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vagal afferent control of abdominal expiratory activity in response to hypoxia and hypercapnia in rats.
    Lemes EV; Zoccal DB
    Respir Physiol Neurobiol; 2014 Nov; 203():90-7. PubMed ID: 25218412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of A5 noradrenergic neurons in the chemoreflex control of respiratory and sympathetic activities in unanesthetized conditions.
    Taxini CL; Moreira TS; Takakura AC; Bícego KC; Gargaglioni LH; Zoccal DB
    Neuroscience; 2017 Jun; 354():146-157. PubMed ID: 28461215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO2 : role of carotid body CO2.
    Smith CA; Blain GM; Henderson KS; Dempsey JA
    J Physiol; 2015 Sep; 593(18):4225-43. PubMed ID: 26171601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A5 noradrenergic neurons and breathing control in neonate rats.
    Taxini CL; Marques DA; Bícego KC; Gargaglioni LH
    Pflugers Arch; 2021 Jun; 473(6):859-872. PubMed ID: 33855632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of breathing and blood pressure by parafacial neurons in conscious rats.
    Takakura AC; Moreira TS; De Paula PM; Menani JV; Colombari E
    Exp Physiol; 2013 Jan; 98(1):304-15. PubMed ID: 22613741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Central respiratory control of A5 and A6 pontine noradrenergic neurons.
    Guyenet PG; Koshiya N; Huangfu D; Verberne AJ; Riley TA
    Am J Physiol; 1993 Jun; 264(6 Pt 2):R1035-44. PubMed ID: 8322954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Significance of pulmonary vagal afferents for respiratory muscle activity in the cat.
    Marek W; Muckenhoff K; Prabhakar NR
    J Physiol Pharmacol; 2008 Dec; 59 Suppl 6():407-20. PubMed ID: 19218665
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cardiorespiratory effects of gap junction blockade in the locus coeruleus in unanesthetized adult rats.
    Patrone LG; Bícego KC; Hartzler LK; Putnam RW; Gargaglioni LH
    Respir Physiol Neurobiol; 2014 Jan; 190():86-95. PubMed ID: 24035835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of in vivo ventilatory and single chemosensitive neuron responses to hypercapnia in rats.
    Stunden CE; Filosa JA; Garcia AJ; Dean JB; Putnam RW
    Respir Physiol; 2001 Sep; 127(2-3):135-55. PubMed ID: 11504586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ionotropic but not metabotropic glutamatergic receptors in the locus coeruleus modulate the hypercapnic ventilatory response in unanaesthetized rats.
    Taxini CL; Puga CC; Dias MB; Bícego KC; Gargaglioni LH
    Acta Physiol (Oxf); 2013 May; 208(1):125-35. PubMed ID: 23414221
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of parafacial nuclei in control of breathing in adult rats.
    Huckstepp RT; Cardoza KP; Henderson LE; Feldman JL
    J Neurosci; 2015 Jan; 35(3):1052-67. PubMed ID: 25609622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of carotid bodies in the generation of active inspiratory and expiratory responses to exercise in rats.
    Spiller PF; da Silva CAA; Francescato HDC; Moraes DJA
    Exp Physiol; 2020 Aug; 105(8):1349-1359. PubMed ID: 32362040
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ventilatory strategy in hypoxic or hypercapnic newborns.
    Bonora M; Boule M; Gautier H
    Biol Neonate; 1994; 65(3-4):198-204. PubMed ID: 8038283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.