These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Subunit positioning and stator filament stiffness in regulation and power transmission in the V1 motor of the Manduca sexta V-ATPase. Muench SP; Scheres SH; Huss M; Phillips C; Vitavska O; Wieczorek H; Trinick J; Harrison MA J Mol Biol; 2014 Jan; 426(2):286-300. PubMed ID: 24075871 [TBL] [Abstract][Full Text] [Related]
8. Structure of intact Thermus thermophilus V-ATPase by cryo-EM reveals organization of the membrane-bound V(O) motor. Lau WC; Rubinstein JL Proc Natl Acad Sci U S A; 2010 Jan; 107(4):1367-72. PubMed ID: 20080582 [TBL] [Abstract][Full Text] [Related]
9. Mechanical inhibition of isolated V Kishikawa JI; Nakanishi A; Furuta A; Kato T; Namba K; Tamakoshi M; Mitsuoka K; Yokoyama K Elife; 2020 Jul; 9():. PubMed ID: 32639230 [TBL] [Abstract][Full Text] [Related]
10. Origin of asymmetry at the intersubunit interfaces of V1-ATPase from Thermus thermophilus. Nagamatsu Y; Takeda K; Kuranaga T; Numoto N; Miki K J Mol Biol; 2013 Aug; 425(15):2699-708. PubMed ID: 23639357 [TBL] [Abstract][Full Text] [Related]
11. The membrane domain of the Na+-motive V-ATPase from Enterococcus hirae contains a heptameric rotor. Murata T; Arechaga I; Fearnley IM; Kakinuma Y; Yamato I; Walker JE J Biol Chem; 2003 Jun; 278(23):21162-7. PubMed ID: 12651848 [TBL] [Abstract][Full Text] [Related]
12. Basic properties of rotary dynamics of the molecular motor Enterococcus hirae V1-ATPase. Minagawa Y; Ueno H; Hara M; Ishizuka-Katsura Y; Ohsawa N; Terada T; Shirouzu M; Yokoyama S; Yamato I; Muneyuki E; Noji H; Murata T; Iino R J Biol Chem; 2013 Nov; 288(45):32700-32707. PubMed ID: 24089518 [TBL] [Abstract][Full Text] [Related]
13. Molecular structure and rotary dynamics of Enterococcus hirae V₁-ATPase. Iino R; Minagawa Y; Ueno H; Hara M; Murata T IUBMB Life; 2014 Sep; 66(9):624-30. PubMed ID: 25229752 [TBL] [Abstract][Full Text] [Related]
14. Cryo-electron microscopy of the vacuolar ATPase motor reveals its mechanical and regulatory complexity. Muench SP; Huss M; Song CF; Phillips C; Wieczorek H; Trinick J; Harrison MA J Mol Biol; 2009 Mar; 386(4):989-99. PubMed ID: 19244615 [TBL] [Abstract][Full Text] [Related]
15. Molecular basis of ADP inhibition of vacuolar (V)-type ATPase/synthase. Kishikawa J; Nakanishi A; Furuike S; Tamakoshi M; Yokoyama K J Biol Chem; 2014 Jan; 289(1):403-12. PubMed ID: 24247239 [TBL] [Abstract][Full Text] [Related]
16. The study of vacuolar-type ATPases by single particle electron microscopy. Zhao J; Rubinstein JL Biochem Cell Biol; 2014 Dec; 92(6):460-6. PubMed ID: 25350640 [TBL] [Abstract][Full Text] [Related]
17. Cryo-EM structures of intact V-ATPase from bovine brain. Wang R; Long T; Hassan A; Wang J; Sun Y; Xie XS; Li X Nat Commun; 2020 Aug; 11(1):3921. PubMed ID: 32764564 [TBL] [Abstract][Full Text] [Related]
18. Atomic model for the membrane-embedded V Mazhab-Jafari MT; Rohou A; Schmidt C; Bueler SA; Benlekbir S; Robinson CV; Rubinstein JL Nature; 2016 Nov; 539(7627):118-122. PubMed ID: 27776355 [TBL] [Abstract][Full Text] [Related]
19. Structure and conformational plasticity of the intact Zhou L; Sazanov LA Science; 2019 Aug; 365(6455):. PubMed ID: 31439765 [TBL] [Abstract][Full Text] [Related]
20. Understanding the apparent stator-rotor connections in the rotary ATPase family using coarse-grained computer modeling. Richardson RA; Papachristos K; Read DJ; Harlen OG; Harrison M; Paci E; Muench SP; Harris SA Proteins; 2014 Dec; 82(12):3298-311. PubMed ID: 25174610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]