BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30353464)

  • 1. Circular pellicles formed by Pseudomonas alkylphenolica KL28 are a sophisticated architecture principally designed by matrix substance.
    Song MM; Veeranagouda Y; Ganzorig M; Lee K
    J Microbiol; 2018 Nov; 56(11):790-797. PubMed ID: 30353464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Flagella, Type IV Pili, Biosurfactants, and Extracellular Polymeric Substance Polysaccharides on the Formation of Pellicles by Pseudomonas aeruginosa.
    Qi L; Christopher GF
    Langmuir; 2019 Apr; 35(15):5294-5304. PubMed ID: 30883129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Escherichia coli biofilms have an organized and complex extracellular matrix structure.
    Hung C; Zhou Y; Pinkner JS; Dodson KW; Crowley JR; Heuser J; Chapman MR; Hadjifrangiskou M; Henderson JP; Hultgren SJ
    mBio; 2013 Sep; 4(5):e00645-13. PubMed ID: 24023384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of gacS and gacA mutations on colony architecture, surface motility, biofilm formation and chemical toxicity in Pseudomonas sp. KL28.
    Choi KS; Veeraragouda Y; Cho KM; Lee SO; Jo GR; Cho K; Lee K
    J Microbiol; 2007 Dec; 45(6):492-8. PubMed ID: 18176530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An alginate-like exopolysaccharide biosynthesis gene cluster involved in biofilm aerial structure formation by Pseudomonas alkylphenolia.
    Lee K; Lim EJ; Kim KS; Huang SL; Veeranagouda Y; Rehm BH
    Appl Microbiol Biotechnol; 2014 May; 98(9):4137-48. PubMed ID: 24493568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A spider web strategy of type IV pili-mediated migration to build a fibre-like Psl polysaccharide matrix in Pseudomonas aeruginosa biofilms.
    Wang S; Parsek MR; Wozniak DJ; Ma LZ
    Environ Microbiol; 2013 Aug; 15(8):2238-53. PubMed ID: 23425591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms.
    Friedman L; Kolter R
    Mol Microbiol; 2004 Feb; 51(3):675-90. PubMed ID: 14731271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facultative control of matrix production optimizes competitive fitness in Pseudomonas aeruginosa PA14 biofilm models.
    Madsen JS; Lin YC; Squyres GR; Price-Whelan A; de Santiago Torio A; Song A; Cornell WC; Sørensen SJ; Xavier JB; Dietrich LE
    Appl Environ Microbiol; 2015 Dec; 81(24):8414-26. PubMed ID: 26431965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acid soluble extracellular matrix confers structural stability to marine Bacillus haynesii pellicle biofilms.
    K R; Y V N; V P V
    Colloids Surf B Biointerfaces; 2020 Oct; 194():111160. PubMed ID: 32526635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix.
    Friedman L; Kolter R
    J Bacteriol; 2004 Jul; 186(14):4457-65. PubMed ID: 15231777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants.
    Klausen M; Heydorn A; Ragas P; Lambertsen L; Aaes-Jørgensen A; Molin S; Tolker-Nielsen T
    Mol Microbiol; 2003 Jun; 48(6):1511-24. PubMed ID: 12791135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ssg, a putative glycosyltransferase, functions in lipo- and exopolysaccharide biosynthesis and cell surface-related properties in Pseudomonas alkylphenolia.
    Veeranagouda Y; Lee K; Cho AR; Cho K; Anderson EM; Lam JS
    FEMS Microbiol Lett; 2011 Feb; 315(1):38-45. PubMed ID: 21166709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly and development of the Pseudomonas aeruginosa biofilm matrix.
    Ma L; Conover M; Lu H; Parsek MR; Bayles K; Wozniak DJ
    PLoS Pathog; 2009 Mar; 5(3):e1000354. PubMed ID: 19325879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pellicle formation by Escherichia coli K-12: Role of adhesins and motility.
    Golub SR; Overton TW
    J Biosci Bioeng; 2021 Apr; 131(4):381-389. PubMed ID: 33495047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gram-negative bacteria can also form pellicles.
    Armitano J; Méjean V; Jourlin-Castelli C
    Environ Microbiol Rep; 2014 Dec; 6(6):534-44. PubMed ID: 25756106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms.
    Barken KB; Pamp SJ; Yang L; Gjermansen M; Bertrand JJ; Klausen M; Givskov M; Whitchurch CB; Engel JN; Tolker-Nielsen T
    Environ Microbiol; 2008 Sep; 10(9):2331-43. PubMed ID: 18485000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of
    Fiebig A
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 31010900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of a Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture.
    Bomchil N; Watnick P; Kolter R
    J Bacteriol; 2003 Feb; 185(4):1384-90. PubMed ID: 12562809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motility, Chemotaxis and Aerotaxis Contribute to Competitiveness during Bacterial Pellicle Biofilm Development.
    Hölscher T; Bartels B; Lin YC; Gallegos-Monterrosa R; Price-Whelan A; Kolter R; Dietrich LEP; Kovács ÁT
    J Mol Biol; 2015 Nov; 427(23):3695-3708. PubMed ID: 26122431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms.
    Sarkisova S; Patrauchan MA; Berglund D; Nivens DE; Franklin MJ
    J Bacteriol; 2005 Jul; 187(13):4327-37. PubMed ID: 15968041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.