BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30353468)

  • 1. Spectral and structural analysis of large Stokes shift fluorescent protein dKeima570.
    Xu Y; Hwang KY; Nam KH
    J Microbiol; 2018 Nov; 56(11):822-827. PubMed ID: 30353468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Analysis of the Large Stokes Shift Red Fluorescent Protein tKeima.
    Nam KH; Xu Y
    Molecules; 2024 May; 29(11):. PubMed ID: 38893454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reverse pH-dependence of chromophore protonation explains the large Stokes shift of the red fluorescent protein mKeima.
    Violot S; Carpentier P; Blanchoin L; Bourgeois D
    J Am Chem Soc; 2009 Aug; 131(30):10356-7. PubMed ID: 19722611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of the hydrogen bonding network determines the pH-induced non-fluorescent state of the fluorescent protein ZsYellow by protonation of Glu221.
    Bae JE; Kim IJ; Nam KH
    Biochem Biophys Res Commun; 2017 Nov; 493(1):562-567. PubMed ID: 28867188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extended Stokes shift in fluorescent proteins: chromophore-protein interactions in a near-infrared TagRFP675 variant.
    Piatkevich KD; Malashkevich VN; Morozova KS; Nemkovich NA; Almo SC; Verkhusha VV
    Sci Rep; 2013; 3():1847. PubMed ID: 23677204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green fluorescent protein variants as ratiometric dual emission pH sensors. 1. Structural characterization and preliminary application.
    Hanson GT; McAnaney TB; Park ES; Rendell ME; Yarbrough DK; Chu S; Xi L; Boxer SG; Montrose MH; Remington SJ
    Biochemistry; 2002 Dec; 41(52):15477-88. PubMed ID: 12501176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering ESPT pathways based on structural analysis of LSSmKate red fluorescent proteins with large Stokes shift.
    Piatkevich KD; Malashkevich VN; Almo SC; Verkhusha VV
    J Am Chem Soc; 2010 Aug; 132(31):10762-70. PubMed ID: 20681709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence imaging using a fluorescent protein with a large Stokes shift.
    Kogure T; Kawano H; Abe Y; Miyawaki A
    Methods; 2008 Jul; 45(3):223-6. PubMed ID: 18586106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique interactions between the chromophore and glutamate 16 lead to far-red emission in a red fluorescent protein.
    Shu X; Wang L; Colip L; Kallio K; Remington SJ
    Protein Sci; 2009 Feb; 18(2):460-6. PubMed ID: 19165727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational design of a pH-insensitive cyan fluorescent protein CyPet2 based on the CyPet crystal structure.
    Liu R; Hu XJ; Ding Y
    FEBS Lett; 2017 Jun; 591(12):1761-1769. PubMed ID: 28504316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein.
    Wachter RM; Elsliger MA; Kallio K; Hanson GT; Remington SJ
    Structure; 1998 Oct; 6(10):1267-77. PubMed ID: 9782051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural characterization of a thiazoline-containing chromophore in an orange fluorescent protein, monomeric Kusabira Orange.
    Kikuchi A; Fukumura E; Karasawa S; Mizuno H; Miyawaki A; Shiro Y
    Biochemistry; 2008 Nov; 47(44):11573-80. PubMed ID: 18844376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Determinants of Improved Fluorescence in a Family of Bacteriophytochrome-Based Infrared Fluorescent Proteins: Insights from Continuum Electrostatic Calculations and Molecular Dynamics Simulations.
    Feliks M; Lafaye C; Shu X; Royant A; Field M
    Biochemistry; 2016 Aug; 55(31):4263-74. PubMed ID: 27471775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational partitioning in pH-induced fluorescence of the kindling fluorescent protein (KFP).
    Rusanov AL; Mironov VA; Goryashenko AS; Grigorenko BL; Nemukhin AV; Savitsky AP
    J Phys Chem B; 2011 Jul; 115(29):9195-201. PubMed ID: 21671654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray structure of Cerulean GFP: a tryptophan-based chromophore useful for fluorescence lifetime imaging.
    Malo GD; Pouwels LJ; Wang M; Weichsel A; Montfort WR; Rizzo MA; Piston DW; Wachter RM
    Biochemistry; 2007 Sep; 46(35):9865-73. PubMed ID: 17685554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trans-cis isomerization is responsible for the red-shifted fluorescence in variants of the red fluorescent protein eqFP611.
    Nienhaus K; Nar H; Heilker R; Wiedenmann J; Nienhaus GU
    J Am Chem Soc; 2008 Sep; 130(38):12578-9. PubMed ID: 18761441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring chromophore--protein interactions in fluorescent protein cmFP512 from Cerianthus membranaceus: X-ray structure analysis and optical spectroscopy.
    Nienhaus K; Renzi F; Vallone B; Wiedenmann J; Nienhaus GU
    Biochemistry; 2006 Oct; 45(43):12942-53. PubMed ID: 17059211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and spectral response of Aequorea victoria green fluorescent proteins to chromophore fluorination.
    Pal PP; Bae JH; Azim MK; Hess P; Friedrich R; Huber R; Moroder L; Budisa N
    Biochemistry; 2005 Mar; 44(10):3663-72. PubMed ID: 15751943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-principles study of one- and two-photon absorption of the H-bonding complexes from monomeric red fluorescent proteins with large Stokes shifts.
    Zhang MY; Wang JY; Lin CS; Cheng WD
    J Phys Chem B; 2011 Sep; 115(36):10750-7. PubMed ID: 21827203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and spectral response of green fluorescent protein variants to changes in pH.
    Elsliger MA; Wachter RM; Hanson GT; Kallio K; Remington SJ
    Biochemistry; 1999 Apr; 38(17):5296-301. PubMed ID: 10220315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.