BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

470 related articles for article (PubMed ID: 30353529)

  • 41. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CRISPR/CAS9: A promising approach for the research and treatment of cardiovascular diseases.
    Dong M; Liu J; Liu C; Wang H; Sun W; Liu B
    Pharmacol Res; 2022 Nov; 185():106480. PubMed ID: 36191879
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimisation of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 : single-guide RNA (sgRNA) delivery system in a goat model.
    Huang Y; Ding Y; Liu Y; Zhou S; Ding Q; Yan H; Ma B; Zhao X; Wang X; Chen Y
    Reprod Fertil Dev; 2019 Aug; 31(9):1533-1537. PubMed ID: 31079595
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High Efficiency, Homology-Directed Genome Editing in Caenorhabditis elegans Using CRISPR-Cas9 Ribonucleoprotein Complexes.
    Paix A; Folkmann A; Rasoloson D; Seydoux G
    Genetics; 2015 Sep; 201(1):47-54. PubMed ID: 26187122
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of Zinc Finger Nucleases Versus CRISPR-Specific Nucleases for Genome Editing of the Wiskott-Aldrich Syndrome Locus.
    Gutierrez-Guerrero A; Sanchez-Hernandez S; Galvani G; Pinedo-Gomez J; Martin-Guerra R; Sanchez-Gilabert A; Aguilar-González A; Cobo M; Gregory P; Holmes M; Benabdellah K; Martin F
    Hum Gene Ther; 2018 Mar; 29(3):366-380. PubMed ID: 28922955
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: Current status, future perspectives, and associated challenges.
    Eş I; Gavahian M; Marti-Quijal FJ; Lorenzo JM; Mousavi Khaneghah A; Tsatsanis C; Kampranis SC; Barba FJ
    Biotechnol Adv; 2019; 37(3):410-421. PubMed ID: 30779952
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms.
    Javed MR; Sadaf M; Ahmed T; Jamil A; Nawaz M; Abbas H; Ijaz A
    Curr Microbiol; 2018 Dec; 75(12):1675-1683. PubMed ID: 30078067
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Application of genome-editing systems to enhance available pig resources for agriculture and biomedicine.
    Lee K; Farrell K; Uh K
    Reprod Fertil Dev; 2019 Jan; 32(2):40-49. PubMed ID: 32188556
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The CRISPR-Cas system for plant genome editing: advances and opportunities.
    Kumar V; Jain M
    J Exp Bot; 2015 Jan; 66(1):47-57. PubMed ID: 25371501
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genome editing in Drosophila melanogaster: from basic genome engineering to the multipurpose CRISPR-Cas9 system.
    Ren X; Holsteens K; Li H; Sun J; Zhang Y; Liu LP; Liu Q; Ni JQ
    Sci China Life Sci; 2017 May; 60(5):476-489. PubMed ID: 28527116
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapid Self-Selecting and Clone-Free Integration of Transgenes into Engineered CRISPR Safe Harbor Locations in
    Stevenson ZC; Moerdyk-Schauwecker MJ; Jamison B; Phillips PC
    G3 (Bethesda); 2020 Oct; 10(10):3775-3782. PubMed ID: 32816924
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Heritable/conditional genome editing in C. elegans using a CRISPR-Cas9 feeding system.
    Liu P; Long L; Xiong K; Yu B; Chang N; Xiong JW; Zhu Z; Liu D
    Cell Res; 2014 Jul; 24(7):886-9. PubMed ID: 24874953
    [No Abstract]   [Full Text] [Related]  

  • 53. A Single-Molecule View of Genome Editing Proteins: Biophysical Mechanisms for TALEs and CRISPR/Cas9.
    Cuculis L; Schroeder CM
    Annu Rev Chem Biomol Eng; 2017 Jun; 8():577-597. PubMed ID: 28489428
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A beginner's guide to gene editing.
    Harrison PT; Hart S
    Exp Physiol; 2018 Apr; 103(4):439-448. PubMed ID: 29282799
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microinjection of CRISPR/Cas9 Protein into Channel Catfish, Ictalurus punctatus, Embryos for Gene Editing.
    Elaswad A; Khalil K; Cline D; Page-McCaw P; Chen W; Michel M; Cone R; Dunham R
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29443028
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
    Hong KQ; Liu DY; Chen T; Wang ZW
    World J Microbiol Biotechnol; 2018 Sep; 34(10):153. PubMed ID: 30269229
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A co-CRISPR strategy for efficient genome editing in Caenorhabditis elegans.
    Kim H; Ishidate T; Ghanta KS; Seth M; Conte D; Shirayama M; Mello CC
    Genetics; 2014 Aug; 197(4):1069-80. PubMed ID: 24879462
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Homology-Independent Integration of Plasmid DNA into the Zebrafish Genome.
    Auer TO; Del Bene F
    Methods Mol Biol; 2016; 1451():31-51. PubMed ID: 27464799
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CRISPR/Cas9-based genome engineering of zebrafish using a seamless integration strategy.
    Luo JJ; Bian WP; Liu Y; Huang HY; Yin Q; Yang XJ; Pei DS
    FASEB J; 2018 Sep; 32(9):5132-5142. PubMed ID: 29812974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.