These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30353666)

  • 1. Ultra-low background Raman sensing using a negative-curvature fibre and no distal optics.
    Yerolatsitis S; Yu F; McAughtrie S; Tanner MG; Fleming H; Stone JM; Campbell CJ; Birks TA; Knight JC
    J Biophotonics; 2019 Mar; 12(3):e201800239. PubMed ID: 30353666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-Lensed Negative-Curvature Fibre Probe for Raman Spectroscopy.
    Milenko K; Yerolatsitis S; Aksnes A; Hjelme DR; Stone JM
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sub millimetre flexible fibre probe for background and fluorescence free Raman spectroscopy.
    Yerolatsitis S; Kufcsák A; Ehrlich K; Wood HAC; Fernandes S; Quinn T; Young V; Young I; Hamilton K; Akram AR; Thomson RR; Finlayson K; Dhaliwal K; Stone JM
    J Biophotonics; 2021 Oct; 14(10):e202000488. PubMed ID: 33855811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy.
    Konorov SO; Addison CJ; Schulze HG; Turner RF; Blades MW
    Opt Lett; 2006 Jun; 31(12):1911-3. PubMed ID: 16729112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual purpose fibre - SERS pH sensing and bacterial analysis.
    Fleming H; McAughtrie S; Mills B; Tanner MG; Marks A; Campbell CJ
    Analyst; 2018 Dec; 143(24):5918-5925. PubMed ID: 30289143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-core photonic crystal fiber as a Raman spectroscopy platform with a silica core as an internal reference.
    Pristinski D; Du H
    Opt Lett; 2006 Nov; 31(22):3246-8. PubMed ID: 17072385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the surface enhanced raman scattering (SERS) of bacteria.
    Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD
    J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shell-isolated nanoparticle-enhanced Raman spectroscopy.
    Li JF; Huang YF; Ding Y; Yang ZL; Li SB; Zhou XS; Fan FR; Zhang W; Zhou ZY; Wu DY; Ren B; Wang ZL; Tian ZQ
    Nature; 2010 Mar; 464(7287):392-5. PubMed ID: 20237566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Raman cell based on hollow core photonic crystal fiber for human breath analysis.
    Chow KK; Short M; Lam S; McWilliams A; Zeng H
    Med Phys; 2014 Sep; 41(9):092701. PubMed ID: 25186415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiber-optic plasmonic probe with nanogap-rich Au nanoislands for on-site surface-enhanced Raman spectroscopy using repeated solid-state dewetting.
    Kwak J; Lee W; Kim JB; Bae SI; Jeong KH
    J Biomed Opt; 2019 Mar; 24(3):1-6. PubMed ID: 30873763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.
    Lin M; Wang Y; Sun X; Wang W; Chen L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Miniature Fibre-Optic Raman Probe Fabricated by Ultrafast Laser-Assisted Etching.
    Ross CA; MacLachlan DG; Smith BJE; Beck RJ; Shephard JD; Weston N; Thomson RR
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32053957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Al
    Li N; Hu C; Fu X; Xu X; Liu R; Liu H; Qu J
    Environ Sci Technol; 2017 Mar; 51(5):2899-2906. PubMed ID: 28187253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing.
    Kostovski G; White DJ; Mitchell A; Austin MW; Stoddart PR
    Biosens Bioelectron; 2009 Jan; 24(5):1531-5. PubMed ID: 19084390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical fibre SERS sensors.
    Stoddart PR; White DJ
    Anal Bioanal Chem; 2009 Aug; 394(7):1761-74. PubMed ID: 19407993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AuNPs@mesoSiO2 composites for SERS detection of DTNB molecule.
    Lin CC; Chang CW
    Biosens Bioelectron; 2014 Jan; 51():297-303. PubMed ID: 23978453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman probe using a single hollow waveguide.
    Komachi Y; Sato H; Matsuura Y; Miyagi M; Tashiro H
    Opt Lett; 2005 Nov; 30(21):2942-4. PubMed ID: 16279476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesized Au NPs@silica composite as surface-enhanced Raman spectroscopy (SERS) substrate for fast sensing trace contaminant in milk.
    Xu Y; Kutsanedzie FYH; Hassan MM; Li H; Chen Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():405-412. PubMed ID: 30170175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterisation of a fibre optic Raman probe within a hypodermic needle.
    Iping Petterson IE; Day JC; Fullwood LM; Gardner B; Stone N
    Anal Bioanal Chem; 2015 Nov; 407(27):8311-20. PubMed ID: 26416020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering.
    Li M; Zhang J; Suri S; Sooter LJ; Ma D; Wu N
    Anal Chem; 2012 Mar; 84(6):2837-42. PubMed ID: 22380526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.