These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 30353774)

  • 1. Dengue in the Philippines: model and analysis of parameters affecting transmission.
    de Los Reyes V AA; Escaner JML
    J Biol Dyn; 2018 Dec; 12(1):894-912. PubMed ID: 30353774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating dengue type reproduction numbers for two provinces of Sri Lanka during the period 2013-14.
    Sardar T; Sasmal SK; Chattopadhyay J
    Virulence; 2016; 7(2):187-200. PubMed ID: 26646355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity, uncertainty and identifiability analyses to define a dengue transmission model with real data of an endemic municipality of Colombia.
    Lizarralde-Bejarano DP; Rojas-Díaz D; Arboleda-Sánchez S; Puerta-Yepes ME
    PLoS One; 2020; 15(3):e0229668. PubMed ID: 32160217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Follow up estimation of Aedes aegypti entomological parameters and mathematical modellings.
    Yang HM; Macoris Mde L; Galvani KC; Andrighetti MT
    Biosystems; 2011 Mar; 103(3):360-71. PubMed ID: 21093536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal control strategies for dengue transmission in pakistan.
    Agusto FB; Khan MA
    Math Biosci; 2018 Nov; 305():102-121. PubMed ID: 30218686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative analysis of the relative efficacy of vector-control strategies against dengue fever.
    Amaku M; Coutinho FA; Raimundo SM; Lopez LF; Nascimento Burattini M; Massad E
    Bull Math Biol; 2014 Mar; 76(3):697-717. PubMed ID: 24619807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Impact of Temperature and Human Movement on the Persistence of Dengue Disease.
    Phaijoo GR; Gurung DB
    Comput Math Methods Med; 2017; 2017():1747134. PubMed ID: 29312458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Economic cost and burden of dengue in the Philippines.
    Edillo FE; Halasa YA; Largo FM; Erasmo JNV; Amoin NB; Alera MTP; Yoon IK; Alcantara AC; Shepard DS
    Am J Trop Med Hyg; 2015 Feb; 92(2):360-366. PubMed ID: 25510723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dengue transmission: mathematical model with discrete time delays and estimation of the reproduction number.
    Wu C; Wong PJY
    J Biol Dyn; 2019 Dec; 13(1):1-25. PubMed ID: 31793412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The basic reproduction number obtained from Jacobian and next generation matrices - A case study of dengue transmission modelling.
    Yang HM
    Biosystems; 2014 Dec; 126():52-75. PubMed ID: 25305542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Practical unidentifiability of a simple vector-borne disease model: Implications for parameter estimation and intervention assessment.
    Kao YH; Eisenberg MC
    Epidemics; 2018 Dec; 25():89-100. PubMed ID: 29903539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the transmission dynamics of dengue in the presence of Wolbachia.
    Ndii MZ; Hickson RI; Allingham D; Mercer GN
    Math Biosci; 2015 Apr; 262():157-66. PubMed ID: 25645184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A network model for control of dengue epidemic using sterile insect technique.
    Mishra A; Ambrosio B; Gakkhar S; Aziz-Alaoui MA
    Math Biosci Eng; 2018 Apr; 15(2):441-460. PubMed ID: 29161844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of a dengue disease transmission model with two-stage structure in the human population.
    Li-Martín A; Reyes-Carreto R; Vargas-De-León C
    Math Biosci Eng; 2023 Jan; 20(1):955-974. PubMed ID: 36650797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of reproduction number and non stationary spectral analysis of dengue epidemic.
    Enduri MK; Jolad S
    Math Biosci; 2017 Jun; 288():140-148. PubMed ID: 28389269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optimal control problem arising from a dengue disease transmission model.
    Aldila D; Götz T; Soewono E
    Math Biosci; 2013 Mar; 242(1):9-16. PubMed ID: 23274179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new model of dengue fever in terms of fractional derivative.
    Fatmawati F; Jan R; Khan MA; Khan Y; Ullah S
    Math Biosci Eng; 2020 Aug; 17(5):5267-5287. PubMed ID: 33120552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The seasonal pattern of dengue in endemic areas: mathematical models of mechanisms.
    Bartley LM; Donnelly CA; Garnett GP
    Trans R Soc Trop Med Hyg; 2002; 96(4):387-97. PubMed ID: 12497975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical analysis of a power-law form time dependent vector-borne disease transmission model.
    Sardar T; Saha B
    Math Biosci; 2017 Jun; 288():109-123. PubMed ID: 28274854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of residence times in two-patch dengue transmission dynamics and optimal strategies.
    Lee S; Castillo-Chavez C
    J Theor Biol; 2015 Jun; 374():152-64. PubMed ID: 25791283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.