BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 3035380)

  • 21. Myristylation is involved in intracellular retention of hepatitis B virus envelope proteins.
    Prange R; Clemen A; Streeck RE
    J Virol; 1991 Jul; 65(7):3919-23. PubMed ID: 2041101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Myristoylation is important at multiple stages in poliovirus assembly.
    Moscufo N; Simons J; Chow M
    J Virol; 1991 May; 65(5):2372-80. PubMed ID: 1850017
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mutation in VP4 defines a new step in the late stages of cell entry by poliovirus.
    Moscufo N; Yafal AG; Rogove A; Hogle J; Chow M
    J Virol; 1993 Aug; 67(8):5075-8. PubMed ID: 8392631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutations in the poliovirus P1 capsid precursor at arginine residues VP4-ARG34, VP3-ARG223, and VP1-ARG129 affect virus assembly and encapsidation of genomic RNA.
    Ansardi DC; Luo M; Morrow CD
    Virology; 1994 Feb; 199(1):20-34. PubMed ID: 8116243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Putative autocleavage of outer capsid protein micro1, allowing release of myristoylated peptide micro1N during particle uncoating, is critical for cell entry by reovirus.
    Odegard AL; Chandran K; Zhang X; Parker JS; Baker TS; Nibert ML
    J Virol; 2004 Aug; 78(16):8732-45. PubMed ID: 15280481
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detergent binding to unmyristylated protein kinase A--structural implications for the role of myristate.
    Sowadski JM; Ellis CA; Madhusudan
    J Bioenerg Biomembr; 1996 Feb; 28(1):7-12. PubMed ID: 8786241
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Myristic acid is coupled to a structural protein of polyoma virus and SV40.
    Streuli CH; Griffin BE
    Nature; 1987 Apr 9-15; 326(6113):619-22. PubMed ID: 3031509
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of plasticity and interactions of a highly conserved motif within a picornavirus capsid precursor required for virus infectivity.
    Kristensen T; Belsham GJ
    Sci Rep; 2019 Aug; 9(1):11747. PubMed ID: 31409836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Myristylation of a duck hepatitis B virus envelope protein is essential for infectivity but not for virus assembly.
    Macrae DR; Bruss V; Ganem D
    Virology; 1991 Mar; 181(1):359-63. PubMed ID: 1994583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SCH 38057: a picornavirus capsid-binding molecule with antiviral activity after the initial stage of viral uncoating.
    Rozhon E; Cox S; Buontempo P; O'Connell J; Slater W; De Martino J; Schwartz J; Miller G; Arnold E; Zhang A
    Antiviral Res; 1993 May; 21(1):15-35. PubMed ID: 8391247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of poliovirus-like particles by recombinant baculoviruses expressing the individual VP0, VP3, and VP1 proteins by comparison to particles derived from the expressed poliovirus polyprotein.
    Bräutigam S; Snezhkov E; Bishop DH
    Virology; 1993 Feb; 192(2):512-24. PubMed ID: 8380663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mammalian reoviruses contain a myristoylated structural protein.
    Nibert ML; Schiff LA; Fields BN
    J Virol; 1991 Apr; 65(4):1960-7. PubMed ID: 2002551
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conformational changes during proteolytic processing of a picornavirus capsid proteins.
    Smyth MS; Trudgett A; Martin JH; Hoey EM; Martin SJ
    Arch Virol; 2000; 145(7):1473-9. PubMed ID: 10963351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Myristate modification does not function as a membrane association signal during poliovirus capsid assembly.
    Lee YM; Chow M
    Virology; 1992 Apr; 187(2):814-20. PubMed ID: 1312279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of wild-type HIV-1 virus production by a matrix deficient Gag mutant.
    Lee PP; Linial ML
    Virology; 1995 Apr; 208(2):808-11. PubMed ID: 7747455
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A rapid posttranslational myristylation of a 68-kD protein in D. discoideum.
    da Silva AM; Klein C
    J Cell Biol; 1990 Aug; 111(2):401-7. PubMed ID: 2199457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein glycosylation and myristylation in Chlorella virus PBCV-1 and its antigenic variants.
    Que Q; Li Y; Wang IN; Lane LC; Chaney WG; Van Etten JL
    Virology; 1994 Sep; 203(2):320-7. PubMed ID: 8053156
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polyprotein processing in picornavirus replication.
    Kräusslich HG; Nicklin MJ; Lee CK; Wimmer E
    Biochimie; 1988 Jan; 70(1):119-30. PubMed ID: 2840974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Similarity between the picornavirus VP3 capsid polypeptide and the Saccharomyces cerevisiae virus capsid polypeptide.
    Bruenn LA; Diamond ME; Dowhanick JJ
    Nucleic Acids Res; 1989 Sep; 17(18):7487-93. PubMed ID: 2677999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of the polyomavirus VP2 and VP3 proteins in insect cells: coexpression with the major capsid protein VP1 alters VP2/VP3 subcellular localization.
    Delos SE; Montross L; Moreland RB; Garcea RL
    Virology; 1993 May; 194(1):393-8. PubMed ID: 8386884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.