These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30354051)

  • 1. Tip-Sonicated Red Phosphorus-Graphene Nanoribbon Composite for Full Lithium-Ion Batteries.
    Wang T; Wei S; Villegas Salvatierra R; Han X; Wang Z; Tour JM
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):38936-38943. PubMed ID: 30354051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast Charging High Capacity Asphalt-Lithium Metal Batteries.
    Wang T; Villegas Salvatierra R; Jalilov AS; Tian J; Tour JM
    ACS Nano; 2017 Nov; 11(11):10761-10767. PubMed ID: 28953348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries.
    Lin J; Peng Z; Xiang C; Ruan G; Yan Z; Natelson D; Tour JM
    ACS Nano; 2013 Jul; 7(7):6001-6. PubMed ID: 23758123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and Application of Phosphorus/Co
    Zamani N; Modarresi-Alam AR; Noroozifar M
    ACS Omega; 2018 Apr; 3(4):4620-4630. PubMed ID: 31458683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dispersion-Assembly Approach to Synthesize Three-Dimensional Graphene/Polymer Composite Aerogel as a Powerful Organic Cathode for Rechargeable Li and Na Batteries.
    Zhang Y; Huang Y; Yang G; Bu F; Li K; Shakir I; Xu Y
    ACS Appl Mater Interfaces; 2017 May; 9(18):15549-15556. PubMed ID: 28425698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P-Doping a Porous Carbon Host Promotes the Lithium Storage Performance of Red Phosphorus.
    Han X; Meng X; Chen S; Zhou J; Wang M; Sun L; Jia Y; Peng X; Mai H; Zhu G; Li J; Bielawski CW; Geng J
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):11713-11722. PubMed ID: 36802456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycled Graphite from Spent Lithium-Ion Batteries as a Conductive Framework Directly Applied in Red Phosphorus-Based Anodes.
    Huang H; Xie D; Zheng Z; Zeng Y; Xie S; Liu P; Zhang M; Wang S; Cheng F
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37913551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Solution Synthesis of Red Phosphorus Nanoparticles for Lithium Ion Battery Anodes.
    Wang F; Zi W; Zhao BX; Du HB
    Nanoscale Res Lett; 2018 Nov; 13(1):356. PubMed ID: 30411163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoporous Red Phosphorus on Reduced Graphene Oxide as Superior Anode for Sodium-Ion Batteries.
    Liu S; Xu H; Bian X; Feng J; Liu J; Yang Y; Yuan C; An Y; Fan R; Ci L
    ACS Nano; 2018 Jul; 12(7):7380-7387. PubMed ID: 29927234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room-Temperature Pressure Synthesis of Layered Black Phosphorus-Graphene Composite for Sodium-Ion Battery Anodes.
    Liu Y; Liu Q; Zhang A; Cai J; Cao X; Li Z; Asimow PD; Zhou C
    ACS Nano; 2018 Aug; 12(8):8323-8329. PubMed ID: 30027730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries.
    Zhu Y; Wen Y; Fan X; Gao T; Han F; Luo C; Liou SC; Wang C
    ACS Nano; 2015 Mar; 9(3):3254-64. PubMed ID: 25738662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable Tailoring Graphene Nanoribbons with Tunable Surface Functionalities: An Effective Strategy toward High-Performance Lithium-Ion Batteries.
    Wang C; Li YS; Jiang J; Chiang WH
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17441-9. PubMed ID: 26196904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-surface conversion reaction realizes advanced red phosphorus/carbon anode for high-performance lithium-ion batteries.
    Huang Y; Li H; Wu M; Tian T; Wang R; Zeng S; Song J; Tang H
    J Colloid Interface Sci; 2024 Oct; 672():117-125. PubMed ID: 38833731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Li4Ti5O12/graphene nanoribbons composite as anodes for lithium ion batteries.
    Medina PA; Zheng H; Fahlman BD; Annamalai P; Swartbooi A; le Roux L; Mathe MK
    Springerplus; 2015; 4():643. PubMed ID: 26543777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithium Vanadium Oxide/Graphene Composite as a Promising Anode for Lithium-Ion Batteries.
    Meng L; Peng J; Zhang Y; Cui Y; An L; Chen P; Zhang F
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36615953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tin Disulfide Nanoplates on Graphene Nanoribbons for Full Lithium Ion Batteries.
    Gao C; Li L; Raji AR; Kovalchuk A; Peng Z; Fei H; He Y; Kim ND; Zhong Q; Xie E; Tour JM
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26549-56. PubMed ID: 26562719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Vapor Transport Synthesis of Fibrous Red Phosphorus Crystal as Anodes for Lithium-Ion Batteries.
    Liu L; Gao X; Cui X; Wang B; Hu F; Yuan T; Li J; Zu L; Lian H; Cui X
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution Synthesis of Iodine-Doped Red Phosphorus Nanoparticles for Lithium-Ion Battery Anodes.
    Chang WC; Tseng KW; Tuan HY
    Nano Lett; 2017 Feb; 17(2):1240-1247. PubMed ID: 28080070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesoporous Tin-Based Oxide Nanospheres/Reduced Graphene Composites as Advanced Anodes for Lithium-Ion Half/Full Cells and Sodium-Ion Batteries.
    He Y; Li A; Dong C; Li C; Xu L
    Chemistry; 2017 Oct; 23(55):13724-13733. PubMed ID: 28722257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatically Assembled Magnetite Nanoparticles/Graphene Foam as a Binder-Free Anode for Lithium Ion Battery.
    Zhang N; Yan X; Huang Y; Li J; Ma J; Ng DHL
    Langmuir; 2017 Sep; 33(36):8899-8905. PubMed ID: 28768104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.