These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30354059)

  • 1. Cascade Freezing of Supercooled Water Droplet Collectives.
    Graeber G; Dolder V; Schutzius TM; Poulikakos D
    ACS Nano; 2018 Nov; 12(11):11274-11281. PubMed ID: 30354059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frost halos from supercooled water droplets.
    Jung S; Tiwari MK; Poulikakos D
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16073-8. PubMed ID: 23012410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freezing-induced wetting transitions on superhydrophobic surfaces.
    Lambley H; Graeber G; Vogt R; Gaugler LC; Baumann E; Schutzius TM; Poulikakos D
    Nat Phys; 2023; 19(5):649-655. PubMed ID: 37205127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous self-dislodging of freezing water droplets and the role of wettability.
    Graeber G; Schutzius TM; Eghlidi H; Poulikakos D
    Proc Natl Acad Sci U S A; 2017 Oct; 114(42):11040-11045. PubMed ID: 28973877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.
    Chavan S; Park D; Singla N; Sokalski P; Boyina K; Miljkovic N
    Langmuir; 2018 Jun; 34(22):6636-6644. PubMed ID: 29733606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures.
    Yan X; Au SCY; Chan SC; Chan YL; Leung NC; Wu WY; Sin DT; Zhao G; Chung CHY; Mei M; Yang Y; Qiu H; Yao S
    Nat Commun; 2024 Feb; 15(1):1567. PubMed ID: 38378825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppressing Ice Nucleation of Supercooled Condensate with Biphilic Topography.
    Hou Y; Yu M; Shang Y; Zhou P; Song R; Xu X; Chen X; Wang Z; Yao S
    Phys Rev Lett; 2018 Feb; 120(7):075902. PubMed ID: 29542940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of supercooled droplet freezing on surfaces.
    Jung S; Tiwari MK; Doan NV; Poulikakos D
    Nat Commun; 2012 Jan; 3():615. PubMed ID: 22233625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imparting Icephobicity with Substrate Flexibility.
    Vasileiou T; Schutzius TM; Poulikakos D
    Langmuir; 2017 Jul; 33(27):6708-6718. PubMed ID: 28609620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are superhydrophobic surfaces best for icephobicity?
    Jung S; Dorrestijn M; Raps D; Das A; Megaridis CM; Poulikakos D
    Langmuir; 2011 Mar; 27(6):3059-66. PubMed ID: 21319778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of wettability on sessile drop freezing: when superhydrophobicity stimulates an extreme freezing delay.
    Boinovich L; Emelyanenko AM; Korolev VV; Pashinin AS
    Langmuir; 2014 Feb; 30(6):1659-68. PubMed ID: 24491217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous droplet trampolining on rigid superhydrophobic surfaces.
    Schutzius TM; Jung S; Maitra T; Graeber G; Köhme M; Poulikakos D
    Nature; 2015 Nov; 527(7576):82-5. PubMed ID: 26536959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saltwater icephobicity: Influence of surface chemistry on saltwater icing.
    Carpenter K; Bahadur V
    Sci Rep; 2015 Dec; 5():17563. PubMed ID: 26626958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of ice formation and propagation on superhydrophobic surfaces: A review.
    Azimi Yancheshme A; Momen G; Jafari Aminabadi R
    Adv Colloid Interface Sci; 2020 May; 279():102155. PubMed ID: 32305656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Desublimation Frosting on Nanoengineered Surfaces.
    Walker C; Lerch S; Reininger M; Eghlidi H; Milionis A; Schutzius TM; Poulikakos D
    ACS Nano; 2018 Aug; 12(8):8288-8296. PubMed ID: 30001108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets.
    Mishchenko L; Hatton B; Bahadur V; Taylor JA; Krupenkin T; Aizenberg J
    ACS Nano; 2010 Dec; 4(12):7699-707. PubMed ID: 21062048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Salinity on the Mechanism of Surface Icing: Implication to the Disappearing Freezing Singularity.
    Singha SK; Das PK; Maiti B
    Langmuir; 2018 Jul; 34(30):9064-9071. PubMed ID: 29996655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of water vapor desublimation in the adhesion of an iced droplet to a superhydrophobic surface.
    Boinovich L; Emelyanenko AM
    Langmuir; 2014 Oct; 30(42):12596-601. PubMed ID: 25286023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling condensation and frost growth with chemical micropatterns.
    Boreyko JB; Hansen RR; Murphy KR; Nath S; Retterer ST; Collier CP
    Sci Rep; 2016 Jan; 6():19131. PubMed ID: 26796663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Condensation and freezing of droplets on superhydrophobic surfaces.
    Oberli L; Caruso D; Hall C; Fabretto M; Murphy PJ; Evans D
    Adv Colloid Interface Sci; 2014 Aug; 210():47-57. PubMed ID: 24200089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.