These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30354059)

  • 41. Physics of icing and rational design of surfaces with extraordinary icephobicity.
    Schutzius TM; Jung S; Maitra T; Eberle P; Antonini C; Stamatopoulos C; Poulikakos D
    Langmuir; 2015 May; 31(17):4807-21. PubMed ID: 25346213
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rational nanostructuring of surfaces for extraordinary icephobicity.
    Eberle P; Tiwari MK; Maitra T; Poulikakos D
    Nanoscale; 2014 May; 6(9):4874-81. PubMed ID: 24667802
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inhibiting Condensation Freezing on Patterned Polyelectrolyte Coatings.
    Jin Y; Wu C; Yang Y; Wu J; He Z; Wang J
    ACS Nano; 2020 Apr; 14(4):5000-5007. PubMed ID: 32223214
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chemical Nature of Heterogeneous Electrofreezing of Supercooled Water Revealed on Polar (Pyroelectric) Surfaces.
    Javitt LF; Curland S; Weissbuch I; Ehre D; Lahav M; Lubomirsky I
    Acc Chem Res; 2022 May; 55(10):1383-1394. PubMed ID: 35504292
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermally Sprayed Coatings: Novel Surface Engineering Strategy Towards Icephobic Solutions.
    Koivuluoto H; Hartikainen E; Niemelä-Anttonen H
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32245210
    [TBL] [Abstract][Full Text] [Related]  

  • 47. From Initial Nucleation to Cassie-Baxter State of Condensed Droplets on Nanotextured Superhydrophobic Surfaces.
    Lv C; Zhang X; Niu F; He F; Hao P
    Sci Rep; 2017 Feb; 7():42752. PubMed ID: 28202939
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Icephobic behaviors of superhydrophobic amorphous carbon nano-films synthesized from a flame process.
    Xu Y; Zhang G; Li L; Xu C; Lv X; Zhang H; Yao W
    J Colloid Interface Sci; 2019 Sep; 552():613-621. PubMed ID: 31170614
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Icephobic surfaces: Definition and figures of merit.
    Irajizad P; Nazifi S; Ghasemi H
    Adv Colloid Interface Sci; 2019 Jul; 269():203-218. PubMed ID: 31096074
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New insight into icing and de-icing properties of hydrophobic and hydrophilic structured surfaces based on core-shell particles.
    Chanda J; Ionov L; Kirillova A; Synytska A
    Soft Matter; 2015 Dec; 11(47):9126-34. PubMed ID: 26411650
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heat of freezing for supercooled water: measurements at atmospheric pressure.
    Cantrell W; Kostinski A; Szedlak A; Johnson A
    J Phys Chem A; 2011 Jun; 115(23):5729-34. PubMed ID: 21087023
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ice nucleation on nanotextured surfaces: the influence of surface fraction, pillar height and wetting states.
    Metya AK; Singh JK; Müller-Plathe F
    Phys Chem Chem Phys; 2016 Sep; 18(38):26796-26806. PubMed ID: 27711467
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancing the Mechanical Durability of Icephobic Surfaces by Introducing Autonomous Self-Healing Function.
    Zhuo Y; Håkonsen V; He Z; Xiao S; He J; Zhang Z
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11972-11978. PubMed ID: 29547258
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fast-freezing kinetics inside a droplet impacting on a cold surface.
    Kant P; Koldeweij RBJ; Harth K; van Limbeek MAJ; Lohse D
    Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2788-2794. PubMed ID: 31980522
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Freezing of water and aqueous NaCl droplets coated by organic monolayers as a function of surfactant properties and water activity.
    Knopf DA; Forrester SM
    J Phys Chem A; 2011 Jun; 115(22):5579-91. PubMed ID: 21568271
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced Surface Icephobicity on an Elastic Substrate.
    He Z; Jamil MI; Li T; Zhang Q
    Langmuir; 2022 Jan; 38(1):18-35. PubMed ID: 34919404
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty.
    Riechers B; Wittbracht F; Hütten A; Koop T
    Phys Chem Chem Phys; 2013 Apr; 15(16):5873-87. PubMed ID: 23486888
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Experimental Study on Solidification Characteristics of Sessile Urine Droplets on a Horizontal Cold Plate Surface under Natural Convection.
    Dang Q; Song M; Dang C; Zhan T; Zhang L
    Langmuir; 2022 Jun; 38(25):7846-7857. PubMed ID: 35696680
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exceptional Anti-Icing Performance of Self-Impregnating Slippery Surfaces.
    Stamatopoulos C; Hemrle J; Wang D; Poulikakos D
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):10233-10242. PubMed ID: 28230349
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Studying the Bulk and Contour Ice Nucleation of Water Droplets via Quartz Crystal Microbalances.
    Esmeryan KD; Stoimenov NI
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33924179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.