BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 30354203)

  • 1. SREBF1/MicroRNA-33b Axis Exhibits Potent Effect on Unstable Atherosclerotic Plaque Formation In Vivo.
    Nishino T; Horie T; Baba O; Sowa N; Hanada R; Kuwabara Y; Nakao T; Nishiga M; Nishi H; Nakashima Y; Nakazeki F; Ide Y; Koyama S; Kimura M; Nagata M; Yoshida K; Takagi Y; Nakamura T; Hasegawa K; Miyamoto S; Kimura T; Ono K
    Arterioscler Thromb Vasc Biol; 2018 Oct; 38(10):2460-2473. PubMed ID: 30354203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA-205-5p Promotes Unstable Atherosclerotic Plaque Formation In Vivo.
    Meng X; Yin J; Yu X; Guo Y
    Cardiovasc Drugs Ther; 2020 Feb; 34(1):25-39. PubMed ID: 32034643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Differential Roles of MicroRNA-33a and -33b During Atherosclerosis Progression With Genetically Modified Mice.
    Koyama S; Horie T; Nishino T; Baba O; Sowa N; Miyasaka Y; Kuwabara Y; Nakao T; Nishiga M; Nishi H; Nakashima Y; Nakazeki F; Ide Y; Kimura M; Tsuji S; Ruiz Rodriguez R; Xu S; Yamasaki T; Otani C; Watanabe T; Nakamura T; Hasegawa K; Kimura T; Ono K
    J Am Heart Assoc; 2019 Jul; 8(13):e012609. PubMed ID: 31242815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA-33b knock-in mice for an intron of sterol regulatory element-binding factor 1 (Srebf1) exhibit reduced HDL-C in vivo.
    Horie T; Nishino T; Baba O; Kuwabara Y; Nakao T; Nishiga M; Usami S; Izuhara M; Nakazeki F; Ide Y; Koyama S; Sowa N; Yahagi N; Shimano H; Nakamura T; Hasegawa K; Kume N; Yokode M; Kita T; Kimura T; Ono K
    Sci Rep; 2014 Jun; 4():5312. PubMed ID: 24931346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA-325 facilitates atherosclerosis progression by mediating the SREBF1/LXR axis via KDM1A.
    Pu Y; Zhao Q; Men X; Jin W; Yang M
    Life Sci; 2021 Jul; 277():119464. PubMed ID: 33811891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides.
    Rayner KJ; Esau CC; Hussain FN; McDaniel AL; Marshall SM; van Gils JM; Ray TD; Sheedy FJ; Goedeke L; Liu X; Khatsenko OG; Kaimal V; Lees CJ; Fernandez-Hernando C; Fisher EA; Temel RE; Moore KJ
    Nature; 2011 Oct; 478(7369):404-7. PubMed ID: 22012398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apoptotic cell induction of miR-10b in macrophages contributes to advanced atherosclerosis progression in ApoE-/- mice.
    Wang D; Wang W; Lin W; Yang W; Zhang P; Chen M; Ding D; Liu C; Zheng J; Ling W
    Cardiovasc Res; 2018 Nov; 114(13):1794-1805. PubMed ID: 29850779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis.
    Meiler S; Baumer Y; Toulmin E; Seng K; Boisvert WA
    Arterioscler Thromb Vasc Biol; 2015 Feb; 35(2):323-31. PubMed ID: 25524771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1.
    Zhang L; Cheng H; Yue Y; Li S; Zhang D; He R
    Cardiovasc Pathol; 2018; 33():6-15. PubMed ID: 29268138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-24 aggravates atherosclerosis by inhibiting selective lipid uptake from HDL cholesterol via the post-transcriptional repression of scavenger receptor class B type I.
    Ren K; Zhu X; Zheng Z; Mo ZC; Peng XS; Zeng YZ; Ou HX; Zhang QH; Qi HZ; Zhao GJ; Yi GH
    Atherosclerosis; 2018 Mar; 270():57-67. PubMed ID: 29407889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Csf1r and Bcl6 in macrophages mediates the stage-specific effects of microRNA-155 on atherosclerosis.
    Wei Y; Zhu M; Corbalán-Campos J; Heyll K; Weber C; Schober A
    Arterioscler Thromb Vasc Biol; 2015 Apr; 35(4):796-803. PubMed ID: 25810298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype.
    Vengrenyuk Y; Nishi H; Long X; Ouimet M; Savji N; Martinez FO; Cassella CP; Moore KJ; Ramsey SA; Miano JM; Fisher EA
    Arterioscler Thromb Vasc Biol; 2015 Mar; 35(3):535-46. PubMed ID: 25573853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic Dissection of the Impact of miR-33a and miR-33b during the Progression of Atherosclerosis.
    Price NL; Rotllan N; Canfrán-Duque A; Zhang X; Pati P; Arias N; Moen J; Mayr M; Ford DA; Baldán Á; Suárez Y; Fernández-Hernando C
    Cell Rep; 2017 Oct; 21(5):1317-1330. PubMed ID: 29091769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HIF-1α (Hypoxia-Inducible Factor-1α) Promotes Macrophage Necroptosis by Regulating miR-210 and miR-383.
    Karshovska E; Wei Y; Subramanian P; Mohibullah R; Geißler C; Baatsch I; Popal A; Corbalán Campos J; Exner N; Schober A
    Arterioscler Thromb Vasc Biol; 2020 Mar; 40(3):583-596. PubMed ID: 31996026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNAs regulating lipid metabolism in atherogenesis.
    Rayner KJ; Fernandez-Hernando C; Moore KJ
    Thromb Haemost; 2012 Apr; 107(4):642-7. PubMed ID: 22274626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circulating miR-33a and miR-33b are up-regulated in familial hypercholesterolaemia in paediatric age.
    Martino F; Carlomosti F; Avitabile D; Persico L; Picozza M; Barillà F; Arca M; Montali A; Martino E; Zanoni C; Parrotto S; Magenta A
    Clin Sci (Lond); 2015 Dec; 129(11):963-72. PubMed ID: 26229086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hematopoietic Deficiency of the Long Noncoding RNA MALAT1 Promotes Atherosclerosis and Plaque Inflammation.
    Cremer S; Michalik KM; Fischer A; Pfisterer L; Jaé N; Winter C; Boon RA; Muhly-Reinholz M; John D; Uchida S; Weber C; Poller W; Günther S; Braun T; Li DY; Maegdefessel L; Perisic Matic L; Hedin U; Soehnlein O; Zeiher A; Dimmeler S
    Circulation; 2019 Mar; 139(10):1320-1334. PubMed ID: 30586743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. microRNA-33 Regulates Macrophage Autophagy in Atherosclerosis.
    Ouimet M; Ediriweera H; Afonso MS; Ramkhelawon B; Singaravelu R; Liao X; Bandler RC; Rahman K; Fisher EA; Rayner KJ; Pezacki JP; Tabas I; Moore KJ
    Arterioscler Thromb Vasc Biol; 2017 Jun; 37(6):1058-1067. PubMed ID: 28428217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA-9 overexpression suppresses vulnerable atherosclerotic plaque and enhances vascular remodeling through negative regulation of the p38MAPK pathway via OLR1 in acute coronary syndrome.
    Yu DR; Wang T; Huang J; Fang XY; Fan HF; Yi GH; Liu Q; Zhang Y; Zeng XZ; Liu QB
    J Cell Biochem; 2020 Jan; 121(1):49-62. PubMed ID: 31571264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urolithin A attenuated ox-LDL-induced cholesterol accumulation in macrophages partly through regulating miR-33a and ERK/AMPK/SREBP1 signaling pathways.
    Han QA; Su D; Shi C; Liu P; Wang Y; Zhu B; Xia X
    Food Funct; 2020 Apr; 11(4):3432-3440. PubMed ID: 32236173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.