These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 3035438)

  • 1. Effects of forskolin on spontaneous behavior, rectal temperature and brain cAMP levels of rats: interaction with rolipram.
    Wachtel H; Löschmann PA; Schneider HH; Rettig KJ
    Neurosci Lett; 1987 May; 76(2):191-6. PubMed ID: 3035438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Species differences in behavioural effects of rolipram and other adenosine cyclic 3H, 5H-monophosphate phosphodiesterase inhibitors.
    Wachtel H
    J Neural Transm; 1983; 56(2-3):139-52. PubMed ID: 6190991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of forskolin and cyclic nucleotides in animal models predictive of antidepressant activity: interactions with rolipram.
    Wachtel H; Löschmann PA
    Psychopharmacology (Berl); 1986; 90(4):430-5. PubMed ID: 3027733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristic behavioural alterations in rats induced by rolipram and other selective adenosine cyclic 3', 5'-monophosphate phosphodiesterase inhibitors.
    Wachtel H
    Psychopharmacology (Berl); 1982; 77(4):309-16. PubMed ID: 6182575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurotropic effects of the optical isomers of the selective adenosine cyclic 3',5'-monophosphate phosphodiesterase inhibitor rolipram in rats in-vivo.
    Wachtel H
    J Pharm Pharmacol; 1983 Jul; 35(7):440-4. PubMed ID: 6136585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of pig aortic smooth muscle cell DNA synthesis by selective type III and type IV cyclic AMP phosphodiesterase inhibitors.
    Souness JE; Hassall GA; Parrott DP
    Biochem Pharmacol; 1992 Sep; 44(5):857-66. PubMed ID: 1326964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pharmacodynamic action of the cyclic AMP phosphodiesterase inhibitor rolipram on prolactin producing rat pituitary adenoma (GH4C1) cells.
    Gordeladze JO
    Biosci Rep; 1990 Aug; 10(4):375-88. PubMed ID: 2174276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the effect of isobutylmethylxanthine and phosphodiesterase-selective inhibitors on cAMP levels in SH-SY5Y neuroblastoma cells.
    Morgan AJ; Murray KJ; Challiss RA
    Biochem Pharmacol; 1993 Jun; 45(12):2373-80. PubMed ID: 7687130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of spinal cord cyclic AMP in the acoustic startle response in rats.
    Kehne JH; Astrachan DI; Astrachan E; Tallman JF; Davis M
    J Neurosci; 1986 Nov; 6(11):3250-7. PubMed ID: 3021926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping of second messenger and rolipram receptors in mammalian brain.
    Araki T; Kato H; Kogure K
    Brain Res Bull; 1992 Jun; 28(6):843-8. PubMed ID: 1322228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depressant effect of forskolin on spontaneous locomotor activity in mice.
    Barraco RA; Phillis JW; Altman HJ
    Gen Pharmacol; 1985; 16(5):521-4. PubMed ID: 2996973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of type-selective phosphodiesterase inhibitors on glucose-induced insulin secretion and islet phosphodiesterase activity.
    Shafiee-Nick R; Pyne NJ; Furman BL
    Br J Pharmacol; 1995 Aug; 115(8):1486-92. PubMed ID: 8564209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversal of pulmonary capillary ischemia-reperfusion injury by rolipram, a cAMP phosphodiesterase inhibitor.
    Barnard JW; Seibert AF; Prasad VR; Smart DA; Strada SJ; Taylor AE; Thompson WJ
    J Appl Physiol (1985); 1994 Aug; 77(2):774-81. PubMed ID: 8002527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potentiation by forskolin of both SNP- and ANP-stimulated cyclic GMP accumulation in porcine isolated palmar lateral vein.
    Wright IK; Amirchetty-Rao S; Kendall DA
    Br J Pharmacol; 1994 Aug; 112(4):1146-50. PubMed ID: 7524992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. cAMP decreases steady-state levels of delta-opioid receptor mRNA in NG108-15 cells.
    Gylys KH; Tran N; Magendzo K; Zaki P; Evans CJ
    Neuroreport; 1997 Jul; 8(9-10):2369-72. PubMed ID: 9243642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antidepressant-like effects of rolipram and other inhibitors of cyclic adenosine monophosphate phosphodiesterase on behavior maintained by differential reinforcement of low response rate.
    O'Donnell JM
    J Pharmacol Exp Ther; 1993 Mar; 264(3):1168-78. PubMed ID: 8383740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rolipram, a novel antidepressant drug, reverses the hypothermia and hypokinesia of monoamine-depleted mice by an action beyond postsynaptic monoamine receptors.
    Wachtel H; Schneider HH
    Neuropharmacology; 1986 Oct; 25(10):1119-26. PubMed ID: 2946976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphodiesterase inhibitors control A172 human glioblastoma cell death through cAMP-mediated activation of protein kinase A and Epac1/Rap1 pathways.
    Moon EY; Lee GH; Lee MS; Kim HM; Lee JW
    Life Sci; 2012 Feb; 90(9-10):373-80. PubMed ID: 22227470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effect of phosphodiesterase inhibitors on IL-13 release from peripheral blood mononuclear cells.
    Yoshida N; Shimizu Y; Kitaichi K; Hiramatsu K; Takeuchi M; Ito Y; Kume H; Yamaki K; Suzuki R; Shibata E; Hasegawa T; Takagi K
    Clin Exp Immunol; 2001 Dec; 126(3):384-9. PubMed ID: 11737051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of a selective cAMP phosphodiesterase inhibitor, rolipram, on methamphetamine-induced behavior.
    Iyo M; Maeda Y; Inada T; Kitao Y; Sasaki H; Fukui S
    Neuropsychopharmacology; 1995 Aug; 13(1):33-9. PubMed ID: 8526969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.