These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 30354856)

  • 1. Somatosensory working memory in human reinforcement-based motor learning.
    Sidarta A; van Vugt FT; Ostry DJ
    J Neurophysiol; 2018 Dec; 120(6):3275-3286. PubMed ID: 30354856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Somatic and Reinforcement-Based Plasticity in the Initial Stages of Human Motor Learning.
    Sidarta A; Vahdat S; Bernardi NF; Ostry DJ
    J Neurosci; 2016 Nov; 36(46):11682-11692. PubMed ID: 27852776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Somatosensory Contribution to the Initial Stages of Human Motor Learning.
    Bernardi NF; Darainy M; Ostry DJ
    J Neurosci; 2015 Oct; 35(42):14316-26. PubMed ID: 26490869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domain-Specific Working Memory, But Not Dopamine-Related Genetic Variability, Shapes Reward-Based Motor Learning.
    Holland P; Codol O; Oxley E; Taylor M; Hamshere E; Joseph S; Huffer L; Galea JM
    J Neurosci; 2019 Nov; 39(47):9383-9396. PubMed ID: 31604835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between motor exploration and reinforcement learning.
    Uehara S; Mawase F; Therrien AS; Cherry-Allen KM; Celnik P
    J Neurophysiol; 2019 Aug; 122(2):797-808. PubMed ID: 31242063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustering analysis of movement kinematics in reinforcement learning.
    Sidarta A; Komar J; Ostry DJ
    J Neurophysiol; 2022 Feb; 127(2):341-353. PubMed ID: 34936514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The consolidation of newly learned movements depends upon somatosensory cortex in humans.
    Ebrahimi S; van der Voort B; Ostry DJ
    J Neurosci; 2024 Jun; ():. PubMed ID: 38871461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Somatosensory perceptual training enhances motor learning by observing.
    McGregor HR; Cashaback JGA; Gribble PL
    J Neurophysiol; 2018 Dec; 120(6):3017-3025. PubMed ID: 30230990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acquisition of motor memory determines the interindividual variability of learning-induced plasticity in the primary motor cortex.
    Hirano M; Kubota S; Koizume Y; Funase K
    J Appl Physiol (1985); 2018 Oct; 125(4):990-998. PubMed ID: 29975602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The human somatosensory cortex contributes to the encoding of newly learned movements.
    Ebrahimi S; Ostry DJ
    Proc Natl Acad Sci U S A; 2024 Feb; 121(6):e2316294121. PubMed ID: 38285945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Plasticity in Somatosensory Cortex Supports Motor Learning by Observing.
    McGregor HR; Cashaback JG; Gribble PL
    Curr Biol; 2016 Apr; 26(7):921-7. PubMed ID: 26972317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of task-relevant saccadic eye movements performed during the encoding of a serial sequence on visuospatial memory performance.
    Martin L; Tapper A; Gonzalez DA; Leclerc M; Niechwiej-Szwedo E
    Exp Brain Res; 2017 May; 235(5):1519-1529. PubMed ID: 28251336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SOVEREIGN: An autonomous neural system for incrementally learning planned action sequences to navigate towards a rewarded goal.
    Gnadt W; Grossberg S
    Neural Netw; 2008 Jun; 21(5):699-758. PubMed ID: 17996419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor Learning Enhances Use-Dependent Plasticity.
    Mawase F; Uehara S; Bastian AJ; Celnik P
    J Neurosci; 2017 Mar; 37(10):2673-2685. PubMed ID: 28143961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic somatosensory feedback supports motor control and learning to operate artificial body parts.
    Amoruso E; Dowdall L; Kollamkulam MT; Ukaegbu O; Kieliba P; Ng T; Dempsey-Jones H; Clode D; Makin TR
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34983040
    [No Abstract]   [Full Text] [Related]  

  • 16. Advanced spatial knowledge of target location eliminates age-related differences in early sensorimotor learning.
    Rajeshkumar L; Trewartha KM
    Exp Brain Res; 2019 Jul; 237(7):1781-1791. PubMed ID: 31049628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatosensory cell response to an auditory cue in a haptic memory task.
    Zhou YD; Fuster JM
    Behav Brain Res; 2004 Aug; 153(2):573-8. PubMed ID: 15265656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Failure to engage spatial working memory contributes to age-related declines in visuomotor learning.
    Anguera JA; Reuter-Lorenz PA; Willingham DT; Seidler RD
    J Cogn Neurosci; 2011 Jan; 23(1):11-25. PubMed ID: 20146609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensorimotor adaptation changes the neural coding of somatosensory stimuli.
    Nasir SM; Darainy M; Ostry DJ
    J Neurophysiol; 2013 Apr; 109(8):2077-85. PubMed ID: 23343897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performing a reaching task with one arm while adapting to a visuomotor rotation with the other can lead to complete transfer of motor learning across the arms.
    Wang J; Lei Y; Binder JR
    J Neurophysiol; 2015 Apr; 113(7):2302-8. PubMed ID: 25632082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.