These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 30355029)
1. Challenges in developing a magnetic resonance-compatible haptic hand-controller for neurosurgical training. Maddahi Y; Zareinia K; Tomanek B; Sutherland GR Proc Inst Mech Eng H; 2018 Oct; ():954411918806934. PubMed ID: 30355029 [TBL] [Abstract][Full Text] [Related]
2. The role of haptic feedback in laparoscopic simulation training. Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336 [TBL] [Abstract][Full Text] [Related]
3. Quantifying force and positional frequency bands in neurosurgical tasks. Maddahi Y; Ghasemloonia A; Zareinia K; Sepehri N; Sutherland GR J Robot Surg; 2016 Jun; 10(2):97-102. PubMed ID: 26914651 [TBL] [Abstract][Full Text] [Related]
4. A haptic force feedback device for virtual reality-fMRI experiments. Di Diodato LM; Mraz R; Baker SN; Graham SJ IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):570-6. PubMed ID: 18198715 [TBL] [Abstract][Full Text] [Related]
6. Wearable teleoperation controller with 2-DoF robotic arm and haptic feedback for enhanced interaction in virtual reality. Zhang Z; Qian C Front Neurorobot; 2023; 17():1228587. PubMed ID: 37609455 [TBL] [Abstract][Full Text] [Related]
7. Proposal and Evaluation of Visual Haptics for Manipulation of Remote Machine System. Haruna M; Ogino M; Koike-Akino T Front Robot AI; 2020; 7():529040. PubMed ID: 33501305 [TBL] [Abstract][Full Text] [Related]
8. Study of the Effectiveness of a Wearable Haptic Interface With Cutaneous and Vibrotactile Feedback for VR-Based Teleoperation. Trinitatova D; Tsetserukou D IEEE Trans Haptics; 2023; 16(4):463-469. PubMed ID: 37037227 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of a magnetic resonance-compatible dentoalveolar tactile stimulus device. Moana-Filho EJ; Nixdorf DR; Bereiter DA; John MT; Harel N BMC Neurosci; 2010 Oct; 11():142. PubMed ID: 21029454 [TBL] [Abstract][Full Text] [Related]
10. Magnetic Levitation Haptic Augmentation for Virtual Tissue Stiffness Perception. Tong Q; Yuan Z; Liao X; Zheng M; Yuan T; Zhao J IEEE Trans Vis Comput Graph; 2018 Dec; 24(12):3123-3136. PubMed ID: 29990159 [TBL] [Abstract][Full Text] [Related]
11. Expert laparoscopist performance on virtual reality simulation tasks with and without haptic features. Siu M; Debbink K; Duda A; Orthopoulos G; Romanelli J; Wu J; Seymour NE Surg Endosc; 2023 Nov; 37(11):8748-8754. PubMed ID: 37563347 [TBL] [Abstract][Full Text] [Related]
12. Design and Evaluation of a Cable-Driven fMRI-Compatible Haptic Interface to Investigate Precision Grip Control. Vigaru B; Sulzer J; Gassert R IEEE Trans Haptics; 2016; 9(1):20-32. PubMed ID: 26441454 [TBL] [Abstract][Full Text] [Related]
13. Design of a Wearable Fingertip Haptic Device for Remote Palpation: Characterisation and Interface with a Virtual Environment. Tzemanaki A; Al GA; Melhuish C; Dogramadzi S Front Robot AI; 2018; 5():62. PubMed ID: 33500941 [TBL] [Abstract][Full Text] [Related]
14. Haptic fMRI: combining functional neuroimaging with haptics for studying the brain's motor control representation. Menon S; Brantner G; Aholt C; Kay K; Khatib O Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4137-42. PubMed ID: 24110643 [TBL] [Abstract][Full Text] [Related]