These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30355029)

  • 1. Challenges in developing a magnetic resonance-compatible haptic hand-controller for neurosurgical training.
    Maddahi Y; Zareinia K; Tomanek B; Sutherland GR
    Proc Inst Mech Eng H; 2018 Oct; ():954411918806934. PubMed ID: 30355029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of haptic feedback in laparoscopic simulation training.
    Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ
    J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying force and positional frequency bands in neurosurgical tasks.
    Maddahi Y; Ghasemloonia A; Zareinia K; Sepehri N; Sutherland GR
    J Robot Surg; 2016 Jun; 10(2):97-102. PubMed ID: 26914651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A haptic force feedback device for virtual reality-fMRI experiments.
    Di Diodato LM; Mraz R; Baker SN; Graham SJ
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):570-6. PubMed ID: 18198715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exodex Adam-A Reconfigurable Dexterous Haptic User Interface for the Whole Hand.
    Lii NY; Pereira A; Dietl J; Stillfried G; Schmidt A; Beik-Mohammadi H; Baker T; Maier A; Pleintinger B; Chen Z; Elawad A; Mentzer L; Pineault A; Reisich P; Albu-Schäffer A
    Front Robot AI; 2021; 8():716598. PubMed ID: 35309724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable teleoperation controller with 2-DoF robotic arm and haptic feedback for enhanced interaction in virtual reality.
    Zhang Z; Qian C
    Front Neurorobot; 2023; 17():1228587. PubMed ID: 37609455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proposal and Evaluation of Visual Haptics for Manipulation of Remote Machine System.
    Haruna M; Ogino M; Koike-Akino T
    Front Robot AI; 2020; 7():529040. PubMed ID: 33501305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the Effectiveness of a Wearable Haptic Interface With Cutaneous and Vibrotactile Feedback for VR-Based Teleoperation.
    Trinitatova D; Tsetserukou D
    IEEE Trans Haptics; 2023; 16(4):463-469. PubMed ID: 37037227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a magnetic resonance-compatible dentoalveolar tactile stimulus device.
    Moana-Filho EJ; Nixdorf DR; Bereiter DA; John MT; Harel N
    BMC Neurosci; 2010 Oct; 11():142. PubMed ID: 21029454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic Levitation Haptic Augmentation for Virtual Tissue Stiffness Perception.
    Tong Q; Yuan Z; Liao X; Zheng M; Yuan T; Zhao J
    IEEE Trans Vis Comput Graph; 2018 Dec; 24(12):3123-3136. PubMed ID: 29990159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expert laparoscopist performance on virtual reality simulation tasks with and without haptic features.
    Siu M; Debbink K; Duda A; Orthopoulos G; Romanelli J; Wu J; Seymour NE
    Surg Endosc; 2023 Nov; 37(11):8748-8754. PubMed ID: 37563347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Evaluation of a Cable-Driven fMRI-Compatible Haptic Interface to Investigate Precision Grip Control.
    Vigaru B; Sulzer J; Gassert R
    IEEE Trans Haptics; 2016; 9(1):20-32. PubMed ID: 26441454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a Wearable Fingertip Haptic Device for Remote Palpation: Characterisation and Interface with a Virtual Environment.
    Tzemanaki A; Al GA; Melhuish C; Dogramadzi S
    Front Robot AI; 2018; 5():62. PubMed ID: 33500941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haptic fMRI: combining functional neuroimaging with haptics for studying the brain's motor control representation.
    Menon S; Brantner G; Aholt C; Kay K; Khatib O
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4137-42. PubMed ID: 24110643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HaptGlove-Untethered Pneumatic Glove for Multimode Haptic Feedback in Reality-Virtuality Continuum.
    Qi J; Gao F; Sun G; Yeo JC; Lim CT
    Adv Sci (Weinh); 2023 Sep; 10(25):e2301044. PubMed ID: 37382392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling In-Bore MRI-Guided Biopsies With Force Feedback.
    Frishman S; Kight A; Pirozzi I; Coffey MC; Daniel BL; Cutkosky MR
    IEEE Trans Haptics; 2020; 13(1):159-166. PubMed ID: 31976906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual Reality Environments and Haptic Strategies to Enhance Implicit Learning and Motivation in Robot-Assisted Training.
    Bernardoni F; Ozen O; Buetler K; Marchal-Crespo L
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():760-765. PubMed ID: 31374722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting Pseudo-Haptics for Psychomotor Skills Development in Online Teaching.
    Kapralos B; Quevedo A; Da Silva C; Peisachovich E; Collins KC; Kanev K; Dubrowski A
    Cureus; 2022 Mar; 14(3):e23664. PubMed ID: 35505750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is Virtual Reality Surgical Performance Influenced by Force Feedback Device Utilized?
    Bugdadi A; Sawaya R; Bajunaid K; Olwi D; Winkler-Schwartz A; Ledwos N; Marwa I; Alsideiri G; Sabbagh AJ; Alotaibi FE; Al-Zhrani G; Maestro RD
    J Surg Educ; 2019; 76(1):262-273. PubMed ID: 30072262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.