These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

33 related articles for article (PubMed ID: 30355029)

  • 1. fMRI-compatible rehabilitation hand device.
    Khanicheh A; Muto A; Triantafyllou C; Weinberg B; Astrakas L; Tzika A; Mavroidis C
    J Neuroeng Rehabil; 2006 Oct; 3():24. PubMed ID: 17022828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haptic Guidance and Haptic Error Amplification in a Virtual Surgical Robotic Training Environment.
    Oquendo YA; Coad MM; Wren SM; Lendvay TS; Nisky I; Jarc AM; Okamura AM; Chua Z
    IEEE Trans Haptics; 2024 Jan; PP():. PubMed ID: 38194379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Energy Reference Time Domain Passivity Control of Haptic Interfaces.
    Rad NF; Nagamune R
    IEEE Trans Haptics; 2023 Dec; PP():. PubMed ID: 38079365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PopTouch: A Submillimeter Thick Dynamically Reconfigured Haptic Interface with Pressable Buttons.
    Firouzeh A; Mizutani A; Groten J; Zirkl M; Shea H
    Adv Mater; 2024 Feb; 36(8):e2307636. PubMed ID: 37883071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haptic Interactions Subject to Variable Latency.
    Hutchison C; Hewlett J; Arbatani S; Weill-Duflos A; Kovecses J
    IEEE Trans Haptics; 2024; 17(1):66-71. PubMed ID: 38261476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic Resonance Imaging-Compatible Optically Powered Miniature Wireless Modular Lorentz Force Actuators.
    Mutlu S; Yasa O; Erin O; Sitti M
    Adv Sci (Weinh); 2021 Jan; 8(2):2002948. PubMed ID: 33511017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RecHap: An Interactive Recommender System for Navigating a Large Number of Mid-Air Haptic Designs.
    Theivendran K; Wu A; Frier W; Schneider O
    IEEE Trans Haptics; 2024; 17(2):165-176. PubMed ID: 37289617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Application of extended reality technology for real-time navigation in clinical operation].
    Li R; Lou Y
    Nan Fang Yi Ke Da Xue Xue Bao; 2023 Jan; 43(1):128-132. PubMed ID: 36856221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual Reality in the Neurosciences: Current Practice and Future Directions.
    Scott H; Griffin C; Coggins W; Elberson B; Abdeldayem M; Virmani T; Larson-Prior LJ; Petersen E
    Front Surg; 2021; 8():807195. PubMed ID: 35252318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low Cost MR Compatible Haptic Stimulation with Application to fMRI Neurofeedback.
    Young KD; Prause N; Lazzaro S; Siegle GJ
    Brain Sci; 2020 Oct; 10(11):. PubMed ID: 33126691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Phantom Material that Resembles Compression Properties of Human Brain Tissue for Training Models.
    Navarro-Lozoya M; Kennedy MS; Dean D; Rodriguez-Devora JI
    Materialia (Oxf); 2019 Dec; 8():. PubMed ID: 32064462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying force and positional frequency bands in neurosurgical tasks.
    Maddahi Y; Ghasemloonia A; Zareinia K; Sepehri N; Sutherland GR
    J Robot Surg; 2016 Jun; 10(2):97-102. PubMed ID: 26914651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A haptic force feedback device for virtual reality-fMRI experiments.
    Di Diodato LM; Mraz R; Baker SN; Graham SJ
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):570-6. PubMed ID: 18198715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Overview of Wearable Haptic Technologies and Their Performance in Virtual Object Exploration.
    van Wegen M; Herder JL; Adelsberger R; Pastore-Wapp M; van Wegen EEH; Bohlhalter S; Nef T; Krack P; Vanbellingen T
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback.
    Lemole GM; Banerjee PP; Luciano C; Neckrysh S; Charbel FT
    Neurosurgery; 2007 Jul; 61(1):142-8; discussion 148-9. PubMed ID: 17621029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges in developing a magnetic resonance-compatible haptic hand-controller for neurosurgical training.
    Maddahi Y; Zareinia K; Tomanek B; Sutherland GR
    Proc Inst Mech Eng H; 2018 Oct; ():954411918806934. PubMed ID: 30355029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of haptic feedback in laparoscopic simulation training.
    Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ
    J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.