These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 30355050)
1. Phytoremediation potential of Tabinda AB; Irfan R; Yasar A; Iqbal A; Mahmood A Environ Technol; 2020 May; 41(12):1514-1519. PubMed ID: 30355050 [TBL] [Abstract][Full Text] [Related]
2. Treatment of textile effluents with Tabinda AB; Arif RA; Yasar A; Baqir M; Rasheed R; Mahmood A; Iqbal A Int J Phytoremediation; 2019; 21(10):939-943. PubMed ID: 31016996 [TBL] [Abstract][Full Text] [Related]
3. Sensitivity of the macrophytes Pistia stratiotes and Eichhornia crassipes to hexazinone and dissipation of this pesticide in aquatic ecosystems. Ribeiro VHV; Alencar BTB; Dos Santos NMC; da Costa VAM; Dos Santos JB; Francino DMT; Souza MF; Silva DV Ecotoxicol Environ Saf; 2019 Jan; 168():177-183. PubMed ID: 30388534 [TBL] [Abstract][Full Text] [Related]
4. Optimization of the phytoremediation conditions of wastewater in post-treatment by Ntakiyiruta P; Briton BGH; Nsavyimana G; Adouby K; Nahimana D; Ntakimazi G; Reinert L Environ Technol; 2022 May; 43(12):1805-1818. PubMed ID: 33198589 [TBL] [Abstract][Full Text] [Related]
5. Phytoremediation of synthetic textile dyes: biosorption and enzymatic degradation involved in efficient dye decolorization by Eichhornia crassipes (Mart.) Solms and Pistia stratiotes L. Ekanayake MS; Udayanga D; Wijesekara I; Manage P Environ Sci Pollut Res Int; 2021 Apr; 28(16):20476-20486. PubMed ID: 33410027 [TBL] [Abstract][Full Text] [Related]
6. Can we use Cd-contaminated macrophytes for biogas production? Fernandes KD; Cañote SJB; Ribeiro EM; Thiago Filho GL; Fonseca AL Environ Sci Pollut Res Int; 2019 Sep; 26(27):27620-27630. PubMed ID: 29948672 [TBL] [Abstract][Full Text] [Related]
7. Uptake of perfluoroalkyl substances PFOS and PFOA by free-floating hydrophytes Kenyon A; Masisak J; Satchwell M; Wu J; Newman L Int J Phytoremediation; 2024; 26(9):1429-1438. PubMed ID: 38584457 [TBL] [Abstract][Full Text] [Related]
8. Floating aquatic macrophytes for the treatment of aquaculture effluents. de Vasconcelos VM; de Morais ERC; Faustino SJB; Hernandez MCR; Gaudêncio HRDSC; de Melo RR; Bessa Junior AP Environ Sci Pollut Res Int; 2021 Jan; 28(3):2600-2607. PubMed ID: 33125679 [TBL] [Abstract][Full Text] [Related]
9. Removal of fluoride contamination in water by three aquatic plants. Karmakar S; Mukherjee J; Mukherjee S Int J Phytoremediation; 2016; 18(3):222-7. PubMed ID: 26247406 [TBL] [Abstract][Full Text] [Related]
10. Assessing water hyacinth (Eichhornia crassopes) and lettuce (Pistia stratiotes) effectiveness in aquaculture wastewater treatment. Akinbile CO; Yusoff MS Int J Phytoremediation; 2012 Mar; 14(3):201-11. PubMed ID: 22567705 [TBL] [Abstract][Full Text] [Related]
11. Phytoremediation of wastewater toxicity using water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes). Victor KK; Séka Y; Norbert KK; Sanogo TA; Celestin AB Int J Phytoremediation; 2016 Oct; 18(10):949-55. PubMed ID: 27159271 [TBL] [Abstract][Full Text] [Related]
12. Correlations between some hazardous inorganic pollutants in the Gomti River and their accumulation in selected macrophytes under aquatic ecosystem. Shah AB; Rai UN; Singh RP Bull Environ Contam Toxicol; 2015 Jun; 94(6):783-90. PubMed ID: 25894347 [TBL] [Abstract][Full Text] [Related]
13. Changes in antioxidant enzyme activities in Eichhornia crassipes (Pontederiaceae) and Pistia stratiotes (Araceae) under heavy metal stress. Odjegba VJ; Fasidi IO Rev Biol Trop; 2007; 55(3-4):815-23. PubMed ID: 19086387 [TBL] [Abstract][Full Text] [Related]
14. Phytoremediation potential of selected plants for nitrate and phosphorus from ground water. Sundaralingam T; Gnanavelrajah N Int J Phytoremediation; 2014; 16(3):275-84. PubMed ID: 24912224 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the Phytoremediation Potential of Hayyat MU; Nawaz R; Irfan A; Al-Hussain SA; Aziz M; Siddiq Z; Ahmad S; Zaki MEA Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36834207 [TBL] [Abstract][Full Text] [Related]
16. Phytoremediation of landfill leachate waste contaminants through floating bed technique using water hyacinth and water lettuce. Abbas Z; Arooj F; Ali S; Zaheer IE; Rizwan M; Riaz MA Int J Phytoremediation; 2019; 21(13):1356-1367. PubMed ID: 31364389 [TBL] [Abstract][Full Text] [Related]
17. Different compensatory mechanisms in two metal-accumulating aquatic macrophytes exposed to acute cadmium stress in outdoor artificial lakes. Sanità di Toppi L; Vurro E; Rossi L; Marabottini R; Musetti R; Careri M; Maffini M; Mucchino C; Corradini C; Badiani M Chemosphere; 2007 Jun; 68(4):769-80. PubMed ID: 17292445 [TBL] [Abstract][Full Text] [Related]
18. Phytoremediation of nickel and chromium-containing industrial wastewaters by water lettuce ( Şentürk İ; Eyceyurt Divarcı NS; Öztürk M Int J Phytoremediation; 2023; 25(5):550-561. PubMed ID: 35786212 [TBL] [Abstract][Full Text] [Related]
19. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India. Singh NK; Raghubanshi AS; Upadhyay AK; Rai UN Ecotoxicol Environ Saf; 2016 Aug; 130():224-33. PubMed ID: 27131746 [TBL] [Abstract][Full Text] [Related]
20. Utilization of two invasive free-floating aquatic plants (Pistia stratiotes and Eichhornia crassipes) as sorbents for oil removal. Yang X; Chen S; Zhang R Environ Sci Pollut Res Int; 2014 Jan; 21(1):781-6. PubMed ID: 24146323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]