BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 30355491)

  • 1. The Developmental Shift of NMDA Receptor Composition Proceeds Independently of GluN2 Subunit-Specific GluN2 C-Terminal Sequences.
    McKay S; Ryan TJ; McQueen J; Indersmitten T; Marwick KFM; Hasel P; Kopanitsa MV; Baxter PS; Martel MA; Kind PC; Wyllie DJA; O'Dell TJ; Grant SGN; Hardingham GE; Komiyama NH
    Cell Rep; 2018 Oct; 25(4):841-851.e4. PubMed ID: 30355491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Individual NMDA receptor GluN2 subunit signaling domains differentially regulate the postnatal maturation of hippocampal excitatory synaptic transmission and plasticity but not dendritic morphology.
    Keith RE; Wild GA; Keith MJ; Chen D; Pack S; Dumas TC
    Synapse; 2024 Jul; 78(4):e22292. PubMed ID: 38813758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic NMDA receptors in basolateral amygdala principal neurons are triheteromeric proteins: physiological role of GluN2B subunits.
    Delaney AJ; Sedlak PL; Autuori E; Power JM; Sah P
    J Neurophysiol; 2013 Mar; 109(5):1391-402. PubMed ID: 23221411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early expression of GluN2A-containing NMDA receptors in a model of fragile X syndrome.
    Banke TG; Traynelis SF; Barria A
    J Neurophysiol; 2024 Apr; 131(4):768-777. PubMed ID: 38380828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential stimulus-dependent synaptic recruitment of CaMKIIα by intracellular determinants of GluN2B.
    She K; Rose JK; Craig AM
    Mol Cell Neurosci; 2012 Nov; 51(3-4):68-78. PubMed ID: 22902837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the intracellular GluN2 C-terminal domain on NMDA receptor function.
    Punnakkal P; Jendritza P; Köhr G
    Neuropharmacology; 2012 Apr; 62(5-6):1985-92. PubMed ID: 22245680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activated CaMKII couples GluN2B and casein kinase 2 to control synaptic NMDA receptors.
    Sanz-Clemente A; Gray JA; Ogilvie KA; Nicoll RA; Roche KW
    Cell Rep; 2013 Mar; 3(3):607-14. PubMed ID: 23478024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of NMDA receptor trafficking and gating by activity-dependent CaMKIIα phosphorylation of the GluN2A subunit.
    Yong XLH; Zhang L; Yang L; Chen X; Tan JZA; Yu X; Chandra M; Livingstone E; Widagdo J; Vieira MM; Roche KW; Lynch JW; Keramidas A; Collins BM; Anggono V
    Cell Rep; 2021 Jul; 36(1):109338. PubMed ID: 34233182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMDA Receptor C-Terminal Domain Signalling in Development, Maturity, and Disease.
    Haddow K; Kind PC; Hardingham GE
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMDA receptors mediate synaptic depression, but not spine loss in the dentate gyrus of adult amyloid Beta (Aβ) overexpressing mice.
    Müller MK; Jacobi E; Sakimura K; Malinow R; von Engelhardt J
    Acta Neuropathol Commun; 2018 Oct; 6(1):110. PubMed ID: 30352630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The subtype of GluN2 C-terminal domain determines the response to excitotoxic insults.
    Martel MA; Ryan TJ; Bell KF; Fowler JH; McMahon A; Al-Mubarak B; Komiyama NH; Horsburgh K; Kind PC; Grant SG; Wyllie DJ; Hardingham GE
    Neuron; 2012 May; 74(3):543-56. PubMed ID: 22578505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental Changes of Synaptic and Extrasynaptic NMDA Receptor Expression in Rat Cerebellar Neurons In Vitro.
    Sibarov DA; Stepanenko YD; Silantiev IV; Abushik PA; Karelina TV; Antonov SM
    J Mol Neurosci; 2018 Feb; 64(2):300-311. PubMed ID: 29285738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity-dependent control of NMDA receptor subunit composition at hippocampal mossy fibre synapses.
    Carta M; Srikumar BN; Gorlewicz A; Rebola N; Mulle C
    J Physiol; 2018 Feb; 596(4):703-716. PubMed ID: 29218821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential Nanoscale Topography and Functional Role of GluN2-NMDA Receptor Subtypes at Glutamatergic Synapses.
    Kellermayer B; Ferreira JS; Dupuis J; Levet F; Grillo-Bosch D; Bard L; Linarès-Loyez J; Bouchet D; Choquet D; Rusakov DA; Bon P; Sibarita JB; Cognet L; Sainlos M; Carvalho AL; Groc L
    Neuron; 2018 Oct; 100(1):106-119.e7. PubMed ID: 30269991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allosteric Interactions between NMDA Receptor Subunits Shape the Developmental Shift in Channel Properties.
    Sun W; Hansen KB; Jahr CE
    Neuron; 2017 Apr; 94(1):58-64.e3. PubMed ID: 28384476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: single-cell NMDA receptor subunit deletion in vivo.
    Gray JA; Shi Y; Usui H; During MJ; Sakimura K; Nicoll RA
    Neuron; 2011 Sep; 71(6):1085-101. PubMed ID: 21943605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The glutamate receptor GluN2 subunit regulates synaptic trafficking of AMPA receptors in the neonatal mouse brain.
    Hamada S; Ogawa I; Yamasaki M; Kiyama Y; Kassai H; Watabe AM; Nakao K; Aiba A; Watanabe M; Manabe T
    Eur J Neurosci; 2014 Oct; 40(8):3136-46. PubMed ID: 25131300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subunit contribution to NMDA receptor hypofunction and redox sensitivity of hippocampal synaptic transmission during aging.
    Kumar A; Thinschmidt JS; Foster TC
    Aging (Albany NY); 2019 Jul; 11(14):5140-5157. PubMed ID: 31339863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The CaMKII/GluN2B Protein Interaction Maintains Synaptic Strength.
    Barcomb K; Hell JW; Benke TA; Bayer KU
    J Biol Chem; 2016 Jul; 291(31):16082-9. PubMed ID: 27246855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subunit-selective N-Methyl-d-aspartate (NMDA) Receptor Signaling through Brefeldin A-resistant Arf Guanine Nucleotide Exchange Factors BRAG1 and BRAG2 during Synapse Maturation.
    Elagabani MN; Briševac D; Kintscher M; Pohle J; Köhr G; Schmitz D; Kornau HC
    J Biol Chem; 2016 Apr; 291(17):9105-18. PubMed ID: 26884337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.