BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

556 related articles for article (PubMed ID: 30355665)

  • 1. Cyclic Diguanylate Regulates Virulence Factor Genes via Multiple Riboswitches in
    McKee RW; Harvest CK; Tamayo R
    mSphere; 2018 Oct; 3(5):. PubMed ID: 30355665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Nutrient-Regulated Cyclic Diguanylate Phosphodiesterase Controls Clostridium difficile Biofilm and Toxin Production during Stationary Phase.
    Purcell EB; McKee RW; Courson DS; Garrett EM; McBride SM; Cheney RE; Tamayo R
    Infect Immun; 2017 Sep; 85(9):. PubMed ID: 28652311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic-di-GMP signaling in the Gram-positive pathogen Clostridium difficile.
    Bordeleau E; Burrus V
    Curr Genet; 2015 Nov; 61(4):497-502. PubMed ID: 25800812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. c-di-GMP Inhibits Early Sporulation in Clostridioides difficile.
    Edwards AN; Willams CL; Pareek N; McBride SM; Tamayo R
    mSphere; 2021 Dec; 6(6):e0091921. PubMed ID: 34878288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile.
    Bordeleau E; Purcell EB; Lafontaine DA; Fortier LC; Tamayo R; Burrus V
    J Bacteriol; 2015 Mar; 197(5):819-32. PubMed ID: 25512308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile.
    Purcell EB; McKee RW; McBride SM; Waters CM; Tamayo R
    J Bacteriol; 2012 Jul; 194(13):3307-16. PubMed ID: 22522894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoregulation of Biofilm Formation in Burkholderia pseudomallei Is Disrupted by Mutation of a Putative Diguanylate Cyclase.
    Plumley BA; Martin KH; Borlee GI; Marlenee NL; Burtnick MN; Brett PJ; AuCoin DP; Bowen RA; Schweizer HP; Borlee BR
    J Bacteriol; 2017 Mar; 199(5):. PubMed ID: 27956524
    [No Abstract]   [Full Text] [Related]  

  • 8. Regulation of Type IV Pili Contributes to Surface Behaviors of Historical and Epidemic Strains of Clostridium difficile.
    Purcell EB; McKee RW; Bordeleau E; Burrus V; Tamayo R
    J Bacteriol; 2016 Feb; 198(3):565-77. PubMed ID: 26598364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The second messenger cyclic Di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD.
    McKee RW; Mangalea MR; Purcell EB; Borchardt EK; Tamayo R
    J Bacteriol; 2013 Nov; 195(22):5174-85. PubMed ID: 24039264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation.
    Moreira RN; Dressaire C; Barahona S; Galego L; Kaever V; Jenal U; Arraiano CM
    mBio; 2017 Sep; 8(5):. PubMed ID: 28928205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple Regulatory Mechanisms Control the Production of CmrRST, an Atypical Signal Transduction System in Clostridioides difficile.
    Garrett EM; Mehra A; Sekulovic O; Tamayo R
    mBio; 2021 Feb; 13(1):e0296921. PubMed ID: 35164558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The RNA Domain Vc1 Regulates Downstream Gene Expression in Response to Cyclic Diguanylate in Vibrio cholerae.
    Kariisa AT; Weeks K; Tamayo R
    PLoS One; 2016; 11(2):e0148478. PubMed ID: 26849223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Type IV Pili Promote Clostridium difficile Adherence and Persistence in a Mouse Model of Infection.
    McKee RW; Aleksanyan N; Garrett EM; Tamayo R
    Infect Immun; 2018 May; 86(5):. PubMed ID: 29483294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of c-di-GMP-Responsive Riboswitches.
    Peltier J; Soutourina O
    Methods Mol Biol; 2017; 1657():377-402. PubMed ID: 28889309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic di-GMP Regulates TfoY in Vibrio cholerae To Control Motility by both Transcriptional and Posttranscriptional Mechanisms.
    Pursley BR; Maiden MM; Hsieh ML; Fernandez NL; Severin GB; Waters CM
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29311281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic Analysis of c-di-GMP Signaling Mechanisms and Biological Functions in Dickeya zeae EC1.
    Chen Y; Zhou J; Lv M; Liang Z; Parsek MR; Zhang LH
    mBio; 2020 Dec; 11(6):. PubMed ID: 33262261
    [No Abstract]   [Full Text] [Related]  

  • 17. Engineering of Bacillus subtilis strains to allow rapid characterization of heterologous diguanylate cyclases and phosphodiesterases.
    Gao X; Dong X; Subramanian S; Matthews PM; Cooper CA; Kearns DB; Dann CE
    Appl Environ Microbiol; 2014 Oct; 80(19):6167-74. PubMed ID: 25085482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic-di-GMP reaches out into the bacterial RNA world.
    Hengge R
    Sci Signal; 2010 Nov; 3(149):pe44. PubMed ID: 21098727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Vc2 Cyclic di-GMP-Dependent Riboswitch of Vibrio cholerae Regulates Expression of an Upstream Putative Small RNA by Controlling RNA Stability.
    Pursley BR; Fernandez NL; Severin GB; Waters CM
    J Bacteriol; 2019 Nov; 201(21):. PubMed ID: 31405916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA-based control mechanisms of Clostridium difficile.
    Soutourina O
    Curr Opin Microbiol; 2017 Apr; 36():62-68. PubMed ID: 28214735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.