BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 30355673)

  • 1. Hog1 Regulates Stress Tolerance and Virulence in the Emerging Fungal Pathogen Candida auris.
    Day AM; McNiff MM; da Silva Dantas A; Gow NAR; Quinn J
    mSphere; 2018 Oct; 3(5):. PubMed ID: 30355673
    [No Abstract]   [Full Text] [Related]  

  • 2. The Two-Component Response Regulator Ssk1 and the Mitogen-Activated Protein Kinase Hog1 Control Antifungal Drug Resistance and Cell Wall Architecture of Candida auris.
    Shivarathri R; Jenull S; Stoiber A; Chauhan M; Mazumdar R; Singh A; Nogueira F; Kuchler K; Chowdhary A; Chauhan N
    mSphere; 2020 Oct; 5(5):. PubMed ID: 33055262
    [No Abstract]   [Full Text] [Related]  

  • 3. Stress-induced nuclear accumulation is dispensable for Hog1-dependent gene expression and virulence in a fungal pathogen.
    Day AM; Herrero-de-Dios CM; MacCallum DM; Brown AJP; Quinn J
    Sci Rep; 2017 Oct; 7(1):14340. PubMed ID: 29085028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress-Activated Protein Kinases in Human Fungal Pathogens.
    Day AM; Quinn J
    Front Cell Infect Microbiol; 2019; 9():261. PubMed ID: 31380304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Evaluations of the Pathogenesis of Candida auris Phenotypes and Candida albicans Using Clinically Relevant Murine Models of Infections.
    Vila T; Montelongo-Jauregui D; Ahmed H; Puthran T; Sultan AS; Jabra-Rizk MA
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32759340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenylyl Cyclase and Protein Kinase A Play Redundant and Distinct Roles in Growth, Differentiation, Antifungal Drug Resistance, and Pathogenicity of
    Kim JS; Lee KT; Lee MH; Cheong E; Bahn YS
    mBio; 2021 Oct; 12(5):e0272921. PubMed ID: 34663094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The environmental stress sensitivities of pathogenic Candida species, including Candida auris, and implications for their spread in the hospital setting.
    Heaney H; Laing J; Paterson L; Walker AW; Gow NAR; Johnson EM; MacCallum DM; Brown AJP
    Med Mycol; 2020 Aug; 58(6):744-755. PubMed ID: 31912151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the Differential Pathogenicity of Candida auris in a Galleria mellonella Infection Model.
    Garcia-Bustos V; Ruiz-Saurí A; Ruiz-Gaitán A; Sigona-Giangreco IA; Cabañero-Navalon MD; Sabalza-Baztán O; Salavert-Lletí M; Tormo MÁ; Pemán J
    Microbiol Spectr; 2021 Sep; 9(1):e0001321. PubMed ID: 34106570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Mouse Models of Disseminated Candida auris Infection.
    Xin H; Mohiuddin F; Tran J; Adams A; Eberle K
    mSphere; 2019 Sep; 4(5):. PubMed ID: 31484737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filamentous growth is a general feature of Candida auris clinical isolates.
    Fan S; Yue H; Zheng Q; Bing J; Tian S; Chen J; Ennis CL; Nobile CJ; Huang G; Du H
    Med Mycol; 2021 Jul; 59(7):734-740. PubMed ID: 33485272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blocking two-component signalling enhances Candida albicans virulence and reveals adaptive mechanisms that counteract sustained SAPK activation.
    Day AM; Smith DA; Ikeh MA; Haider M; Herrero-de-Dios CM; Brown AJ; Morgan BA; Erwig LP; MacCallum DM; Quinn J
    PLoS Pathog; 2017 Jan; 13(1):e1006131. PubMed ID: 28135328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic Analysis of
    Kim SH; Iyer KR; Pardeshi L; Muñoz JF; Robbins N; Cuomo CA; Wong KH; Cowen LE
    mBio; 2019 Jan; 10(1):. PubMed ID: 30696744
    [No Abstract]   [Full Text] [Related]  

  • 13. Emerging Fungal Pathogen Candida auris Evades Neutrophil Attack.
    Johnson CJ; Davis JM; Huttenlocher A; Kernien JF; Nett JE
    mBio; 2018 Aug; 9(4):. PubMed ID: 30131360
    [No Abstract]   [Full Text] [Related]  

  • 14. The Emerging Pathogen Candida auris: Growth Phenotype, Virulence Factors, Activity of Antifungals, and Effect of SCY-078, a Novel Glucan Synthesis Inhibitor, on Growth Morphology and Biofilm Formation.
    Larkin E; Hager C; Chandra J; Mukherjee PK; Retuerto M; Salem I; Long L; Isham N; Kovanda L; Borroto-Esoda K; Wring S; Angulo D; Ghannoum M
    Antimicrob Agents Chemother; 2017 May; 61(5):. PubMed ID: 28223375
    [No Abstract]   [Full Text] [Related]  

  • 15. What do we know about the biology of the emerging fungal pathogen of humans Candida auris?
    Bravo Ruiz G; Lorenz A
    Microbiol Res; 2021 Jan; 242():126621. PubMed ID: 33096325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translation Inhibition by Rocaglates Activates a Species-Specific Cell Death Program in the Emerging Fungal Pathogen Candida auris.
    Iyer KR; Whitesell L; Porco JA; Henkel T; Brown LE; Robbins N; Cowen LE
    mBio; 2020 Mar; 11(2):. PubMed ID: 32156828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudohyphal Growth of the Emerging Pathogen Candida auris Is Triggered by Genotoxic Stress through the S Phase Checkpoint.
    Bravo Ruiz G; Ross ZK; Gow NAR; Lorenz A
    mSphere; 2020 Mar; 5(2):. PubMed ID: 32161147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the emergence, spread and resistance of
    Chakrabarti A; Sood P
    J Med Microbiol; 2021 Mar; 70(3):. PubMed ID: 33599604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans.
    Enjalbert B; Smith DA; Cornell MJ; Alam I; Nicholls S; Brown AJ; Quinn J
    Mol Biol Cell; 2006 Feb; 17(2):1018-32. PubMed ID: 16339080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Candida auris: Epidemiology, biology, antifungal resistance, and virulence.
    Du H; Bing J; Hu T; Ennis CL; Nobile CJ; Huang G
    PLoS Pathog; 2020 Oct; 16(10):e1008921. PubMed ID: 33091071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.