BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30355710)

  • 21. Lipid and water depletion in migrating passerines following passage over the Gulf of Mexico.
    Leberg PL; Spengler TJ; Barrow WC
    Oecologia; 1996 Apr; 106(1):1-7. PubMed ID: 28307151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A characterization of autumn nocturnal migration detected by weather surveillance radars in the northeastern USA.
    Farnsworth A; Van DOREN BM; Hochachka WM; Sheldon D; Winner K; Irvine J; Geevarghese J; Kelling S
    Ecol Appl; 2016 Apr; 26(3):752-70. PubMed ID: 27411248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Projected changes in prevailing winds for transatlantic migratory birds under global warming.
    La Sorte FA; Fink D
    J Anim Ecol; 2017 Mar; 86(2):273-284. PubMed ID: 27973732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. During stopover, migrating blackcaps adjust behavior and intake of food depending on the content of protein in their diets.
    Aamidor SE; Bauchinger U; Mizrahy O; McWilliams SR; Pinshow B
    Integr Comp Biol; 2011 Sep; 51(3):385-93. PubMed ID: 21705790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Seasonal gene expression in a migratory songbird.
    Johnston RA; Paxton KL; Moore FR; Wayne RK; Smith TB
    Mol Ecol; 2016 Nov; 25(22):5680-5691. PubMed ID: 27747949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pointed wings, low wingloading and calm air reduce migratory flight costs in songbirds.
    Bowlin MS; Wikelski M
    PLoS One; 2008 May; 3(5):e2154. PubMed ID: 18478072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fuel loads acquired at a stopover site influence the pace of intercontinental migration in a boreal songbird.
    Gómez C; Bayly NJ; Norris DR; Mackenzie SA; Rosenberg KV; Taylor PD; Hobson KA; Daniel Cadena C
    Sci Rep; 2017 Jun; 7(1):3405. PubMed ID: 28611372
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of wind direction on the capture of the wood warbler (Phylloscopus sibilatrix), an uncommon migratory species in the western Mediterranean.
    Barriocanal C; Montserrat D; Robson D
    Int J Biometeorol; 2011 Nov; 55(6):789-95. PubMed ID: 21604153
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Meteorological factors affecting refueling of European Robin (Erithacus rubecula) during migrations.
    Ktitorov P; Bulyuk V; Leoke D; Kulikova O
    Int J Biometeorol; 2021 Feb; 65(2):291-299. PubMed ID: 33068144
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Autumn bird migration phenology: A potpourri of wind, precipitation and temperature effects.
    Haest B; Hüppop O; van de Pol M; Bairlein F
    Glob Chang Biol; 2019 Dec; 25(12):4064-4080. PubMed ID: 31273866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Body fat influences departure from stopover sites in migratory birds: evidence from whole-island telemetry.
    Goymann W; Spina F; Ferri A; Fusani L
    Biol Lett; 2010 Aug; 6(4):478-81. PubMed ID: 20164077
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of wind conditions in Europe on the advance in timing of the spring migration of the song thrush (Turdus philomelos) in the south-east Baltic region.
    Sinelschikova A; Kosarev V; Panov I; Baushev AN
    Int J Biometeorol; 2007 May; 51(5):431-40. PubMed ID: 17262220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Migration tracking reveals geographic variation in the vulnerability of a Nearctic-Neotropical migrant bird.
    Humple DL; Cormier RL; Richardson TW; Burnett RD; Seavy NE; Dybala KE; Gardali T
    Sci Rep; 2020 Mar; 10(1):5483. PubMed ID: 32218483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Corticosterone and timing of migratory departure in a songbird.
    Eikenaar C; Müller F; Leutgeb C; Hessler S; Lebus K; Taylor PD; Schmaljohann H
    Proc Biol Sci; 2017 Jan; 284(1846):. PubMed ID: 28077768
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genomic analysis of a migratory divide reveals candidate genes for migration and implicates selective sweeps in generating islands of differentiation.
    Delmore KE; Hübner S; Kane NC; Schuster R; Andrew RL; Câmara F; Guigó R; Irwin DE
    Mol Ecol; 2015 Apr; 24(8):1873-88. PubMed ID: 25808860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sex-specific hypothalamic-pituitary-gonadal axis sensitivity in migrating songbirds.
    Covino KM; Jawor JM; Morris SR; Moore FR
    Horm Behav; 2018 Jan; 97():112-120. PubMed ID: 29128250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Migratory flight on the Pacific Flyway: strategies and tendencies of wind drift compensation.
    Newcombe PB; Nilsson C; Lin TY; Winner K; Bernstein G; Maji S; Sheldon D; Farnsworth A; Horton KG
    Biol Lett; 2019 Sep; 15(9):20190383. PubMed ID: 31530114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Days to visit an offshore island: effect of weather conditions on arrival fuel load and potential flight range for common blackbirds Turdus merula migrating over the North Sea.
    Kelsey NA; Hüppop O; Bairlein F
    Mov Ecol; 2021 Oct; 9(1):53. PubMed ID: 34674773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to wind.
    Chapman JW; Nilsson C; Lim KS; Bäckman J; Reynolds DR; Alerstam T
    J Anim Ecol; 2016 Jan; 85(1):115-24. PubMed ID: 26147535
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Where in the air? Aerial habitat use of nocturnally migrating birds.
    Horton KG; Van Doren BM; Stepanian PM; Farnsworth A; Kelly JF
    Biol Lett; 2016 Nov; 12(11):. PubMed ID: 27881761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.