BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30355735)

  • 1. YbtT is a low-specificity type II thioesterase that maintains production of the metallophore yersiniabactin in pathogenic enterobacteria.
    Ohlemacher SI; Xu Y; Kober DL; Malik M; Nix JC; Brett TJ; Henderson JP
    J Biol Chem; 2018 Dec; 293(51):19572-19585. PubMed ID: 30355735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yersinia pestis YbtU and YbtT are involved in synthesis of the siderophore yersiniabactin but have different effects on regulation.
    Geoffroy VA; Fetherston JD; Perry RD
    Infect Immun; 2000 Aug; 68(8):4452-61. PubMed ID: 10899842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced synthesis of the Ybt siderophore or production of aberrant Ybt-like molecules activates transcription of yersiniabactin genes in Yersinia pestis.
    Miller MC; Fetherston JD; Pickett CL; Bobrov AG; Weaver RH; DeMoll E; Perry RD
    Microbiology (Reading); 2010 Jul; 156(Pt 7):2226-2238. PubMed ID: 20413552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yersiniabactin production requires the thioesterase domain of HMWP2 and YbtD, a putative phosphopantetheinylate transferase.
    Bobrov AG; Geoffroy VA; Perry RD
    Infect Immun; 2002 Aug; 70(8):4204-14. PubMed ID: 12117929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uropathogenic enterobacteria use the yersiniabactin metallophore system to acquire nickel.
    Robinson AE; Lowe JE; Koh EI; Henderson JP
    J Biol Chem; 2018 Sep; 293(39):14953-14961. PubMed ID: 30108176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acyl-CoA hydrolysis by the high molecular weight protein 1 subunit of yersiniabactin synthetase: mutational evidence for a cascade of four acyl-enzyme intermediates during hydrolytic editing.
    Suo Z; Chen H; Walsh CT
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14188-93. PubMed ID: 11106385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thioesterase portability and peptidyl carrier protein swapping in yersiniabactin synthetase from Yersinia pestis.
    Suo Z
    Biochemistry; 2005 Mar; 44(12):4926-38. PubMed ID: 15779920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of a type II thioesterase associated with nonribosomal peptide synthesis.
    Linne U; Schwarzer D; Schroeder GN; Marahiel MA
    Eur J Biochem; 2004 Apr; 271(8):1536-45. PubMed ID: 15066179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selectivity of the yersiniabactin synthetase adenylation domain in the two-step process of amino acid activation and transfer to a holo-carrier protein domain.
    Keating TA; Suo Z; Ehmann DE; Walsh CT
    Biochemistry; 2000 Mar; 39(9):2297-306. PubMed ID: 10694396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis.
    Gehring AM; DeMoll E; Fetherston JD; Mori I; Mayhew GF; Blattner FR; Walsh CT; Perry RD
    Chem Biol; 1998 Oct; 5(10):573-86. PubMed ID: 9818149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and functional analysis of RifR, the type II thioesterase from the rifamycin biosynthetic pathway.
    Claxton HB; Akey DL; Silver MK; Admiraal SJ; Smith JL
    J Biol Chem; 2009 Feb; 284(8):5021-9. PubMed ID: 19103602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recycling of Overactivated Acyls by a Type II Thioesterase during Calcimycin Biosynthesis in Streptomyces chartreusis NRRL 3882.
    Wu H; Liang J; Gou L; Wu Q; Liang WJ; Zhou X; Bruce IJ; Deng Z; Wang Z
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yersiniabactin synthetase: a four-protein assembly line producing the nonribosomal peptide/polyketide hybrid siderophore of Yersinia pestis.
    Miller DA; Luo L; Hillson N; Keating TA; Walsh CT
    Chem Biol; 2002 Mar; 9(3):333-44. PubMed ID: 11927258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification, priming, and catalytic acylation of carrier protein domains in the polyketide synthase and nonribosomal peptidyl synthetase modules of the HMWP1 subunit of yersiniabactin synthetase.
    Suo Z; Tseng CC; Walsh CT
    Proc Natl Acad Sci U S A; 2001 Jan; 98(1):99-104. PubMed ID: 11134531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The
    Katumba GL; Tran H; Henderson JP
    mBio; 2022 Feb; 13(1):e0239121. PubMed ID: 35089085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases.
    Schwarzer D; Mootz HD; Linne U; Marahiel MA
    Proc Natl Acad Sci U S A; 2002 Oct; 99(22):14083-8. PubMed ID: 12384573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper import in Escherichia coli by the yersiniabactin metallophore system.
    Koh EI; Robinson AE; Bandara N; Rogers BE; Henderson JP
    Nat Chem Biol; 2017 Sep; 13(9):1016-1021. PubMed ID: 28759019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific observation of acyl intermediate processing in thiotemplate biosynthesis by fourier transform mass spectrometry: the polyketide module of yersiniabactin synthetase.
    Mazur MT; Walsh CT; Kelleher NL
    Biochemistry; 2003 Nov; 42(46):13393-400. PubMed ID: 14621984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of type II thioesterases involved in natamycin biosynthesis in Streptomyces chattanoogensis L10.
    Wang YY; Ran XX; Chen WB; Liu SP; Zhang XS; Guo YY; Jiang XH; Jiang H; Li YQ
    FEBS Lett; 2014 Aug; 588(17):3259-64. PubMed ID: 25064840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential hydrolysis of aberrant intermediates by the type II thioesterase in Escherichia coli nonribosomal enterobactin synthesis: substrate specificities and mutagenic studies on the active-site residues.
    Guo ZF; Sun Y; Zheng S; Guo Z
    Biochemistry; 2009 Mar; 48(8):1712-22. PubMed ID: 19193103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.