BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 30355957)

  • 1. Identification and Quantification of Flavanol Glycosides in
    Zerbib M; Cazals G; Enjalbal C; Saucier C
    Molecules; 2018 Oct; 23(11):. PubMed ID: 30355957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavanol Glycoside Content of Grape Seeds and Skins of
    Pérez-Navarro J; Cazals G; Enjalbal C; Izquierdo-Cañas PM; Gómez-Alonso S; Saucier C
    Molecules; 2019 Nov; 24(21):. PubMed ID: 31694238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New flavanol O-glycosides in grape and wine.
    Zerbib M; Mazauric JP; Meudec E; Le Guernevé C; Lepak A; Nidetzky B; Cheynier V; Terrier N; Saucier C
    Food Chem; 2018 Nov; 266():441-448. PubMed ID: 30381210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of Flavanol Glycosides during Red Grape Fermentation.
    Zerbib M; Cazals G; Ducasse MA; Enjalbal C; Saucier C
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30545151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of new flavan-3-ol monoglycosides by UHPLC-ESI-Q-TOF in grapes and wine.
    Delcambre A; Saucier C
    J Mass Spectrom; 2012 Jun; 47(6):727-36. PubMed ID: 22707165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of the phenolic composition of seeds and skins from Carménère and Cabernet Sauvignon grape varieties (Vitis vinifera L.) during ripening.
    Obreque-Slier E; Peña-Neira A; López-Solís R; Zamora-Marín F; Ricardo-da Silva JM; Laureano O
    J Agric Food Chem; 2010 Mar; 58(6):3591-9. PubMed ID: 20163111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltammetric Behavior, Flavanol and Anthocyanin Contents, and Antioxidant Capacity of Grape Skins and Seeds during Ripening (
    Benbouguerra N; Richard T; Saucier C; Garcia F
    Antioxidants (Basel); 2020 Aug; 9(9):. PubMed ID: 32867242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavanol Quantification of Grapes via Multiple Reaction Monitoring Mass Spectrometry. Application to Differentiation among Clones of Vitis vinifera L. cv. Rufete Grapes.
    García-Estévez I; Alcalde-Eon C; Escribano-Bailón MT
    J Agric Food Chem; 2017 Aug; 65(31):6359-6368. PubMed ID: 28158946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyphenolic Characterization of Merlot, Tannat and Syrah Skin Extracts at Different Degrees of Maturity and Anti-Inflammatory Potential in RAW 264.7 Cells.
    Benbouguerra N; Valls-Fonayet J; Krisa S; Garcia F; Saucier C; Richard T; Hornedo-Ortega R
    Foods; 2021 Mar; 10(3):. PubMed ID: 33807735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First evidence of epicatechin vanillate in grape seed and red wine.
    Ma W; Waffo-Téguo P; Jourdes M; Li H; Teissedre PL
    Food Chem; 2018 Sep; 259():304-310. PubMed ID: 29680058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. Cv. Graciano, Tempranillo, and Cabernet Sauvignon.
    Monagas M; Gómez-Cordovés C; Bartolomé B; Laureano O; Ricardo da Silva JM
    J Agric Food Chem; 2003 Oct; 51(22):6475-81. PubMed ID: 14558765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenolic profiling of the skin, pulp and seeds of Albariño grapes using hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry.
    Di Lecce G; Arranz S; Jáuregui O; Tresserra-Rimbau A; Quifer-Rada P; Lamuela-Raventós RM
    Food Chem; 2014 Feb; 145():874-82. PubMed ID: 24128559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. α-Glucosidase Inhibitory Activity of Tannat Grape Phenolic Extracts in Relation to Their Ripening Stages.
    Dudoit A; Benbouguerra N; Richard T; Hornedo-Ortega R; Valls-Fonayet J; Coussot G; Saucier C
    Biomolecules; 2020 Jul; 10(8):. PubMed ID: 32707893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid.
    Yilmaz Y; Toledo RT
    J Agric Food Chem; 2004 Jan; 52(2):255-60. PubMed ID: 14733505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia.
    Pantelić MM; Dabić Zagorac DČ; Davidović SM; Todić SR; Bešlić ZS; Gašić UM; Tešić ŽLj; Natić MM
    Food Chem; 2016 Nov; 211():243-52. PubMed ID: 27283628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UHPLC-Q-Orbitrap /MS
    Deshaies S; Sommerer N; Garcia F; Mouls L; Saucier C
    Food Chem; 2022 Jul; 382():132505. PubMed ID: 35248832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring of compositional changes during berry ripening in grape seed extracts of cv. Sangiovese (Vitis vinifera L.).
    Bombai G; Pasini F; Verardo V; Sevindik O; Di Foggia M; Tessarin P; Bregoli AM; Caboni MF; Rombolà AD
    J Sci Food Agric; 2017 Jul; 97(9):3058-3064. PubMed ID: 27873332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in glycosylation patterns of monoterpenes during grape berry maturation in six cultivars of Vitis vinifera.
    Godshaw J; Hjelmeland AK; Zweigenbaum J; Ebeler SE
    Food Chem; 2019 Nov; 297():124921. PubMed ID: 31253264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anthocyanins and flavan-3-ols from grapes and wines of Vitis vinifera cv. Cesanese d'Affile.
    Mulinacci N; Santamaria AR; Giaccherini C; Innocenti M; Valletta A; Ciolfi G; Pasqua G
    Nat Prod Res; 2008; 22(12):1033-9. PubMed ID: 18780243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of genetic and vintage factors in flavan-3-ol composition of grape seeds of a segregating Vitis vinifera population.
    Hernández MM; Song S; Menéndez CM
    J Sci Food Agric; 2017 Jan; 97(1):236-243. PubMed ID: 26992139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.