These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Challenges and opportunities for large-scale electrophysiology with Neuropixels probes. Steinmetz NA; Koch C; Harris KD; Carandini M Curr Opin Neurobiol; 2018 Jun; 50():92-100. PubMed ID: 29444488 [TBL] [Abstract][Full Text] [Related]
6. High-channel-count, high-density microelectrode array for closed-loop investigation of neuronal networks. Tsai D; John E; Chari T; Yuste R; Shepard K Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7510-3. PubMed ID: 26738029 [TBL] [Abstract][Full Text] [Related]
7. A mesh microelectrode array for non-invasive electrophysiology within neural organoids. McDonald M; Sebinger D; Brauns L; Gonzalez-Cano L; Menuchin-Lasowski Y; Mierzejewski M; Psathaki OE; Stumpf A; Wickham J; Rauen T; Schöler H; Jones PD Biosens Bioelectron; 2023 May; 228():115223. PubMed ID: 36931193 [TBL] [Abstract][Full Text] [Related]
8. Toward a comparison of microelectrodes for acute and chronic recordings. Ward MP; Rajdev P; Ellison C; Irazoqui PP Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899 [TBL] [Abstract][Full Text] [Related]
9. Scaling Spike Detection and Sorting for Next-Generation Electrophysiology. Hennig MH; Hurwitz C; Sorbaro M Adv Neurobiol; 2019; 22():171-184. PubMed ID: 31073936 [TBL] [Abstract][Full Text] [Related]
10. CMOS microelectrode array for the monitoring of electrogenic cells. Heer F; Franks W; Blau A; Taschini S; Ziegler C; Hierlemann A; Baltes H Biosens Bioelectron; 2004 Sep; 20(2):358-66. PubMed ID: 15308242 [TBL] [Abstract][Full Text] [Related]
11. Au Hierarchical Nanostructure-Based Surface Modification of Microelectrodes for Improved Neural Signal Recording. Woo H; Kim S; Nam H; Choi W; Shin K; Kim K; Yoon S; Kim GH; Kim J; Lim G Anal Chem; 2021 Aug; 93(34):11765-11774. PubMed ID: 34387479 [TBL] [Abstract][Full Text] [Related]
12. A high aspect ratio microelectrode array for mapping neural activity in vitro. Kibler AB; Jamieson BG; Durand DM J Neurosci Methods; 2012 Mar; 204(2):296-305. PubMed ID: 22179041 [TBL] [Abstract][Full Text] [Related]
13. Comparing cardiac action potentials recorded with metal and glass microelectrodes. Omichi C; Lee MH; Ohara T; Naik AM; Wang NC; Karagueuzian HS; Chen PS Am J Physiol Heart Circ Physiol; 2000 Dec; 279(6):H3113-7. PubMed ID: 11087269 [TBL] [Abstract][Full Text] [Related]
14. [Microelectrode technics, methodologic difficulties and ways of overcoming them]. Sokolov V Eksp Med Morfol; 1974; 13(3):205-8. PubMed ID: 4466647 [No Abstract] [Full Text] [Related]
15. Theory and operation of a single microelectrode voltage clamp. Finkel AS; Redman S J Neurosci Methods; 1984 Jun; 11(2):101-27. PubMed ID: 6482502 [TBL] [Abstract][Full Text] [Related]
16. Ion-selective microelectrode technique for simultaneous measurements of small and rapid concentration changes and biopotentials with computer evaluation. Ujec E; Dittert I Physiol Res; 1993; 42(1):55-9. PubMed ID: 8329377 [No Abstract] [Full Text] [Related]
17. Surface-modified microelectrode array with flake nanostructure for neural recording and stimulation. Kim JH; Kang G; Nam Y; Choi YK Nanotechnology; 2010 Feb; 21(8):85303. PubMed ID: 20101076 [TBL] [Abstract][Full Text] [Related]