These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 30356074)
1. The yeast GRASP Grh1 displays a high polypeptide backbone mobility along with an amyloidogenic behavior. Fontana NA; Fonseca-Maldonado R; Mendes LFS; Meleiro LP; Costa-Filho AJ Sci Rep; 2018 Oct; 8(1):15690. PubMed ID: 30356074 [TBL] [Abstract][Full Text] [Related]
2. Biophysical characterization of intrinsically disordered human Golgi matrix protein GRASP65. Reddy ST; Uversky VN; Costa-Filho AJ Int J Biol Macromol; 2020 Nov; 162():1982-1993. PubMed ID: 32822731 [TBL] [Abstract][Full Text] [Related]
3. The yeast GRASP Grh1 colocalizes with COPII and is dispensable for organizing the secretory pathway. Levi SK; Bhattacharyya D; Strack RL; Austin JR; Glick BS Traffic; 2010 Sep; 11(9):1168-79. PubMed ID: 20573068 [TBL] [Abstract][Full Text] [Related]
4. Nucleation-dependent amyloid fibrillation of human GRASP55 in aqueous solution. Reddy ST; Uversky VN; Costa-Filho AJ Eur Biophys J; 2020 Mar; 49(2):133-143. PubMed ID: 31915857 [TBL] [Abstract][Full Text] [Related]
5. Exploring structural aspects of the human Golgi matrix protein GRASP55 in solution. Reddy ST; Mendes LFS; Fontana NA; Costa-Filho AJ Int J Biol Macromol; 2019 Aug; 135():481-489. PubMed ID: 31102680 [TBL] [Abstract][Full Text] [Related]
6. Disorder-to-order transitions in the molten globule-like Golgi Reassembly and Stacking Protein. Mendes LFS; Basso LGM; Kumagai PS; Fonseca-Maldonado R; Costa-Filho AJ Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):855-865. PubMed ID: 29339081 [TBL] [Abstract][Full Text] [Related]
7. In vivo observation of amyloid-like fibrils produced under stress. Fontana NA; Rosse AD; Watts A; Coelho PSR; Costa-Filho AJ Int J Biol Macromol; 2022 Feb; 199():42-50. PubMed ID: 34942208 [TBL] [Abstract][Full Text] [Related]
8. The exquisite structural biophysics of the Golgi Reassembly and Stacking Proteins. Mendes LFS; Fontana NA; Reddy ST; Uversky VN; Costa-Filho AJ Int J Biol Macromol; 2020 Dec; 164():3632-3644. PubMed ID: 32871120 [TBL] [Abstract][Full Text] [Related]
9. Structural model of amyloid fibrils for amyloidogenic peptide from Bgl2p-glucantransferase of S. cerevisiae cell wall and its modifying analog. New morphology of amyloid fibrils. Selivanova OM; Glyakina AV; Gorbunova EY; Mustaeva LG; Suvorina MY; Grigorashvili EI; Nikulin AD; Dovidchenko NV; Rekstina VV; Kalebina TS; Surin AK; Galzitskaya OV Biochim Biophys Acta; 2016 Nov; 1864(11):1489-99. PubMed ID: 27500912 [TBL] [Abstract][Full Text] [Related]
10. The GRASP domain in golgi reassembly and stacking proteins: differences and similarities between lower and higher Eukaryotes. Mendes LFS; Fontana NA; Oliveira CG; Freire MCLC; Lopes JLS; Melo FA; Costa-Filho AJ FEBS J; 2019 Sep; 286(17):3340-3358. PubMed ID: 31044497 [TBL] [Abstract][Full Text] [Related]
11. Resurrecting Golgi proteins to grasp Golgi ribbon formation and self-association under stress. Mendes LFS; Batista MRB; Kava E; Bleicher L; Micheletto MC; Costa-Filho AJ Int J Biol Macromol; 2022 Jan; 194():264-275. PubMed ID: 34861272 [TBL] [Abstract][Full Text] [Related]
12. Characterization of Grp1p, a novel cis-Golgi matrix protein. Kim DW Biochem Biophys Res Commun; 2003 Mar; 303(1):370-8. PubMed ID: 12646213 [TBL] [Abstract][Full Text] [Related]
13. Methods for Structural Analysis of Amyloid Fibrils in Misfolding Diseases. Vadukul DM; Al-Hilaly YK; Serpell LC Methods Mol Biol; 2019; 1873():109-122. PubMed ID: 30341606 [TBL] [Abstract][Full Text] [Related]
14. Investigating by circular dichroism some amyloidogenic elastin-derived polypeptides. Tamburro AM; Lorusso M; Ibris N; Pepe A; Bochicchio B Chirality; 2010; 22 Suppl 1():E56-66. PubMed ID: 21038397 [TBL] [Abstract][Full Text] [Related]
15. Role of endoplasmic reticulum-derived vesicles in the formation of Golgi elements in sec23 and sec18 Saccharomyces Cerevisiae mutants. Morin-Ganet MN; Rambourg A; Clermont Y; Képès F Anat Rec; 1998 Jun; 251(2):256-64. PubMed ID: 9624457 [TBL] [Abstract][Full Text] [Related]
16. Live imaging of yeast Golgi cisternal maturation. Matsuura-Tokita K; Takeuchi M; Ichihara A; Mikuriya K; Nakano A Nature; 2006 Jun; 441(7096):1007-10. PubMed ID: 16699523 [TBL] [Abstract][Full Text] [Related]
17. Structural characterization and biological properties of the amyloidogenic elastin-like peptide (VGGVG)3. Moscarelli P; Boraldi F; Bochicchio B; Pepe A; Salvi AM; Quaglino D Matrix Biol; 2014 Jun; 36():15-27. PubMed ID: 24686253 [TBL] [Abstract][Full Text] [Related]
18. A role for Tlg1p in the transport of proteins within the Golgi apparatus of Saccharomyces cerevisiae. Coe JG; Lim AC; Xu J; Hong W Mol Biol Cell; 1999 Jul; 10(7):2407-23. PubMed ID: 10397773 [TBL] [Abstract][Full Text] [Related]
19. The formation of amyloid-like fibrils of α-chymotrypsin in different aqueous organic solvents. Simon LM; Laczkó I; Demcsák A; Tóth D; Kotormán M; Fülöp L Protein Pept Lett; 2012 May; 19(5):544-50. PubMed ID: 22185498 [TBL] [Abstract][Full Text] [Related]
20. Golgi inheritance in small buds of Saccharomyces cerevisiae is linked to endoplasmic reticulum inheritance. Reinke CA; Kozik P; Glick BS Proc Natl Acad Sci U S A; 2004 Dec; 101(52):18018-23. PubMed ID: 15596717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]