BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 30356174)

  • 1. Homeostatic plasticity and emergence of functional networks in a whole-brain model at criticality.
    Rocha RP; Koçillari L; Suweis S; Corbetta M; Maritan A
    Sci Rep; 2018 Oct; 8(1):15682. PubMed ID: 30356174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local inhibitory plasticity tunes macroscopic brain dynamics and allows the emergence of functional brain networks.
    Hellyer PJ; Jachs B; Clopath C; Leech R
    Neuroimage; 2016 Jan; 124(Pt A):85-95. PubMed ID: 26348562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.
    Naudé J; Cessac B; Berry H; Delord B
    J Neurosci; 2013 Sep; 33(38):15032-43. PubMed ID: 24048833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical Circuit Dynamics Are Homeostatically Tuned to Criticality In Vivo.
    Ma Z; Turrigiano GG; Wessel R; Hengen KB
    Neuron; 2019 Nov; 104(4):655-664.e4. PubMed ID: 31601510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homeostatic Activity-Dependent Tuning of Recurrent Networks for Robust Propagation of Activity.
    Gjorgjieva J; Evers JF; Eglen SJ
    J Neurosci; 2016 Mar; 36(13):3722-34. PubMed ID: 27030758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical-state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks.
    Poil SS; Hardstone R; Mansvelder HD; Linkenkaer-Hansen K
    J Neurosci; 2012 Jul; 32(29):9817-23. PubMed ID: 22815496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain organization into resting state networks emerges at criticality on a model of the human connectome.
    Haimovici A; Tagliazucchi E; Balenzuela P; Chialvo DR
    Phys Rev Lett; 2013 Apr; 110(17):178101. PubMed ID: 23679783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does the regulation of local excitation-inhibition balance aid in recovery of functional connectivity? A computational account.
    Vattikonda A; Surampudi BR; Banerjee A; Deco G; Roy D
    Neuroimage; 2016 Aug; 136():57-67. PubMed ID: 27177761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-organized criticality and scale-free properties in emergent functional neural networks.
    Shin CW; Kim S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):045101. PubMed ID: 17155118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Diffusive Homeostatic Signal Maintains Neural Heterogeneity and Responsiveness in Cortical Networks.
    Sweeney Y; Hellgren Kotaleski J; Hennig MH
    PLoS Comput Biol; 2015 Jul; 11(7):e1004389. PubMed ID: 26158556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive self-organization in a realistic neural network model.
    Meisel C; Gross T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061917. PubMed ID: 20365200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What Is Neural Plasticity?
    von Bernhardi R; Bernhardi LE; Eugenín J
    Adv Exp Med Biol; 2017; 1015():1-15. PubMed ID: 29080018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional mechanisms underlie the emergence of a diverse range of plasticity phenomena.
    Henderson JA; Gong P
    PLoS Comput Biol; 2018 Nov; 14(11):e1006590. PubMed ID: 30419014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using the virtual brain to reveal the role of oscillations and plasticity in shaping brain's dynamical landscape.
    Roy D; Sigala R; Breakspear M; McIntosh AR; Jirsa VK; Deco G; Ritter P
    Brain Connect; 2014 Dec; 4(10):791-811. PubMed ID: 25131838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperation of spike timing-dependent and heterosynaptic plasticities in neural networks: a Fokker-Planck approach.
    Zhu L; Lai YC; Hoppensteadt FC; He J
    Chaos; 2006 Jun; 16(2):023105. PubMed ID: 16822008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homeostatic control of synaptic rewiring in recurrent networks induces the formation of stable memory engrams.
    Gallinaro JV; Gašparović N; Rotter S
    PLoS Comput Biol; 2022 Feb; 18(2):e1009836. PubMed ID: 35143489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and maintenance of neuronal assemblies through synaptic plasticity.
    Litwin-Kumar A; Doiron B
    Nat Commun; 2014 Nov; 5():5319. PubMed ID: 25395015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hebbian plasticity and homeostasis in a model of hypercolumn of the visual cortex.
    Pool RR; Mato G
    Neural Comput; 2010 Jul; 22(7):1837-59. PubMed ID: 20235825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biophysical model of dynamic balancing of excitation and inhibition in fast oscillatory large-scale networks.
    Abeysuriya RG; Hadida J; Sotiropoulos SN; Jbabdi S; Becker R; Hunt BAE; Brookes MJ; Woolrich MW
    PLoS Comput Biol; 2018 Feb; 14(2):e1006007. PubMed ID: 29474352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homeostatic synaptic scaling in self-organizing maps.
    Sullivan TJ; de Sa VR
    Neural Netw; 2006; 19(6-7):734-43. PubMed ID: 16782305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.