These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 30356174)

  • 21. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV: structuring synaptic pathways among recurrent connections.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Dec; 101(5-6):427-44. PubMed ID: 19937070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Network-centered homeostasis through inhibition maintains hippocampal spatial map and cortical circuit function.
    Kaleb K; Pedrosa V; Clopath C
    Cell Rep; 2021 Aug; 36(8):109577. PubMed ID: 34433026
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Associative properties of structural plasticity based on firing rate homeostasis in recurrent neuronal networks.
    Gallinaro JV; Rotter S
    Sci Rep; 2018 Feb; 8(1):3754. PubMed ID: 29491474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-organized criticality, plasticity and sensorimotor coupling. Explorations with a neurorobotic model in a behavioural preference task.
    Aguilera M; Barandiaran XE; Bedia MG; Seron F
    PLoS One; 2015; 10(2):e0117465. PubMed ID: 25706744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unsupervised formation of vocalization-sensitive neurons: a cortical model based on short-term and homeostatic plasticity.
    Lee TP; Buonomano DV
    Neural Comput; 2012 Oct; 24(10):2579-603. PubMed ID: 22845822
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Homeostatic Plasticity Achieved by Incorporation of Random Fluctuations and Soft-Bounded Hebbian Plasticity in Excitatory Synapses.
    Matsubara T; Uehara K
    Front Neural Circuits; 2016; 10():42. PubMed ID: 27313513
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using Inspiration from Synaptic Plasticity Rules to Optimize Traffic Flow in Distributed Engineered Networks.
    Suen JY; Navlakha S
    Neural Comput; 2017 May; 29(5):1204-1228. PubMed ID: 28181878
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Population coupling predicts the plasticity of stimulus responses in cortical circuits.
    Sweeney Y; Clopath C
    Elife; 2020 Apr; 9():. PubMed ID: 32314959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Model for Evolutionary Structural Plasticity and Synchronization of a Network of Neurons.
    Solís-Perales G; Estrada JS
    Comput Math Methods Med; 2021; 2021():9956319. PubMed ID: 34221108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated technology for evaluation of brain function and neural plasticity.
    Rossini PM; Dal Forno G
    Phys Med Rehabil Clin N Am; 2004 Feb; 15(1):263-306. PubMed ID: 15029909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Landau-Ginzburg theory of cortex dynamics: Scale-free avalanches emerge at the edge of synchronization.
    di Santo S; Villegas P; Burioni R; Muñoz MA
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1356-E1365. PubMed ID: 29378970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Weak Higher-Order Interactions in Macroscopic Functional Networks of the Resting Brain.
    Huang X; Xu K; Chu C; Jiang T; Yu S
    J Neurosci; 2017 Oct; 37(43):10481-10497. PubMed ID: 28951453
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stability of Neuronal Networks with Homeostatic Regulation.
    Harnack D; Pelko M; Chaillet A; Chitour Y; van Rossum MC
    PLoS Comput Biol; 2015 Jul; 11(7):e1004357. PubMed ID: 26154297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Homeostatic plasticity in neural development.
    Tien NW; Kerschensteiner D
    Neural Dev; 2018 Jun; 13(1):9. PubMed ID: 29855353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasticity, learning, and complexity in spiking networks.
    Kello CT; Rodny J; Warlaumont AS; Noelle DC
    Crit Rev Biomed Eng; 2012; 40(6):501-18. PubMed ID: 23356694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resiliency of EEG-Based Brain Functional Networks.
    Jalili M
    PLoS One; 2015; 10(8):e0135333. PubMed ID: 26295341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cortical reorganisation of cerebral networks after childhood stroke: impact on outcome.
    Kornfeld S; Delgado Rodríguez JA; Everts R; Kaelin-Lang A; Wiest R; Weisstanner C; Mordasini P; Steinlin M; Grunt S
    BMC Neurol; 2015 Jun; 15():90. PubMed ID: 26058895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Learning rule of homeostatic synaptic scaling: presynaptic dependent or not.
    Liu JK
    Neural Comput; 2011 Dec; 23(12):3145-61. PubMed ID: 21919784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Scalable Weight-Free Learning Algorithm for Regulatory Control of Cell Activity in Spiking Neuronal Networks.
    Zhang X; Foderaro G; Henriquez C; Ferrari S
    Int J Neural Syst; 2018 Mar; 28(2):1750015. PubMed ID: 28270025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.