These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30356295)

  • 21. Insect galls of Restinga de Marambaia (Barra de Guaratiba, Rio de Janeiro, RJ).
    Maia VC; Silva LO
    Braz J Biol; 2016 Apr; 76(3):787-95. PubMed ID: 27097094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular mechanisms of tannin accumulation in Rhus galls and genes involved in plant-insect interactions.
    Chen H; Liu J; Cui K; Lu Q; Wang C; Wu H; Yang Z; Ding W; Shao S; Wang H; Ling X; King-Jones K; Chen X
    Sci Rep; 2018 Jun; 8(1):9841. PubMed ID: 29959354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of
    Kot I; Sempruch C; Rubinowska K; Michałek W
    Bull Entomol Res; 2020 Feb; 110(1):34-43. PubMed ID: 31190653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A study on the effect of host plants on Chinese gallnut morphogenesis.
    Lu Q; Chen H; Zhang J; Wang W; Cui Y; Liu J
    PLoS One; 2023; 18(3):e0283464. PubMed ID: 36947530
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A tale of two tissues: Probing gene expression in a complex insect-induced gall.
    Schultz JC; Stone GN
    Mol Ecol; 2022 Jun; 31(11):3031-3034. PubMed ID: 35466464
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diversity of insect galls associated with coastal shrub vegetation in Rio de Janeiro, Brazil.
    Carvalho-Fernandes SP; Ascendino S; Maia VC; Couri MS
    An Acad Bras Cienc; 2016 Sep; 88(3):1407-18. PubMed ID: 27627066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit.
    Tooker JF; Helms AM
    J Chem Ecol; 2014 Jul; 40(7):742-53. PubMed ID: 25027764
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds.
    Oliveira DC; Isaias RMS; Fernandes GW; Ferreira BG; Carneiro RGS; Fuzaro L
    J Insect Physiol; 2016 Jan; 84():103-113. PubMed ID: 26620152
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photosynthetic efficiency of Clusia arrudae leaf tissue with and without Cecidomyiidae galls.
    Fernandes GW; Coelho MS; Lüttge U
    Braz J Biol; 2010 Oct; 70(3 Suppl):723-8. PubMed ID: 21085778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phytohormones and willow gall induction by a gall-inducing sawfly.
    Yamaguchi H; Tanaka H; Hasegawa M; Tokuda M; Asami T; Suzuki Y
    New Phytol; 2012 Oct; 196(2):586-595. PubMed ID: 22913630
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of source-sink tissues in the leaf of Chinese cabbage (Brassica rapa ssp. pekinensis) by carbohydrate content and transcriptomic analysis.
    Lee J; Dong X; Choi K; Song H; Yi H; Hur Y
    Genes Genomics; 2020 Jan; 42(1):13-24. PubMed ID: 31612374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Is a Gall an Extended Phenotype of the Inducing Insect? A Comparative Study of Selected Morphological and Physiological Traits of Leaf and Stem Galls on Machilus thunbergii (Lauraceae) Induced by Five Species of Daphnephila (Diptera: Cecidomyiidae) in Northeastern Taiwan.
    Pan LY; Chen WN; Chiu ST; Raman A; Chiang TC; Yang MM
    Zoolog Sci; 2015 Jun; 32(3):314-21. PubMed ID: 26003988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytological cycles and fates in Psidium myrtoides are altered towards new cell metabolism and functionalities by the galling activity of Nothotrioza myrtoidis.
    Carneiro RG; Isaias RM
    Protoplasma; 2015 Mar; 252(2):637-46. PubMed ID: 25272990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenotypic plasticity and similarity among gall morphotypes on a superhost, Baccharis reticularia (Asteraceae).
    Formiga AT; Silveira FA; Fernandes GW; Isaias RM
    Plant Biol (Stuttg); 2015 Mar; 17(2):512-21. PubMed ID: 25124804
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of leaflet age in anatomy and possible adaptive values of the midrib gall of Copaifera langsdorffii (Fabaceae: Caesalpinioideae).
    de Oliveira DC; Isaias RM
    Rev Biol Trop; 2009; 57(1-2):293-302. PubMed ID: 19637708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An endoparasitoid avoids hyperparasitism by manipulating immobile host herbivore to modify host plant morphology.
    Fujii T; Matsuo K; Abe Y; Yukawa J; Tokuda M
    PLoS One; 2014; 9(7):e102508. PubMed ID: 25033216
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemical responses of chestnut oak to a galling cynipid.
    Allison SD; Schultz JC
    J Chem Ecol; 2005 Jan; 31(1):151-66. PubMed ID: 15839487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution and frequency of galls induced by Anisodiplosis waltheriae Maia (Diptera: Cecidomyiidae) on the invasive plant Waltheria indica L. (Sterculiaceae).
    Almeida FV; Santos JC; Silveira FA; Fernandes GW
    Neotrop Entomol; 2006; 35(4):435-9. PubMed ID: 17061789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptome Analysis of
    He W; Chen Y; Gao M; Zhao Y; Xu Z; Cao P; Zhang Q; Jiao Y; Li H; Wu L; Wang Y
    G3 (Bethesda); 2018 Mar; 8(4):1103-1114. PubMed ID: 29487185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphological characterization of insect galls and new records of associated invertebrates in a Cerrado area in Bahia State, Brazil.
    Lima VP; Calado D
    Braz J Biol; 2018 Nov; 78(4):636-643. PubMed ID: 29319753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.