These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30356306)

  • 1. Supervised spatial classification of multispectral LiDAR data in urban areas.
    Huo LZ; Silva CA; Klauberg C; Mohan M; Zhao LJ; Tang P; Hudak AT
    PLoS One; 2018; 13(10):e0206185. PubMed ID: 30356306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multispectral LiDAR Data for Land Cover Classification of Urban Areas.
    Morsy S; Shaker A; El-Rabbany A
    Sensors (Basel); 2017 Apr; 17(5):. PubMed ID: 28445432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple semi-automatic approach for land cover classification from multispectral remote sensing imagery.
    Jiang D; Huang Y; Zhuang D; Zhu Y; Xu X; Ren H
    PLoS One; 2012; 7(9):e45889. PubMed ID: 23049886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated Airborne LiDAR Data and Imagery for Suburban Land Cover Classification Using Machine Learning Methods.
    Mo Y; Zhong R; Sun H; Wu Q; Du L; Geng Y; Cao S
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31035415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the Potential of Using the Spatial and Spectral Information of Multispectral LiDAR for Object Classification.
    Gong W; Sun J; Shi S; Yang J; Du L; Zhu B; Song S
    Sensors (Basel); 2015 Sep; 15(9):21989-2002. PubMed ID: 26340630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic application of geometric and radiometric features of LiDAR data for urban land cover mapping.
    Qin Y; Li S; Vu TT; Niu Z; Ban Y
    Opt Express; 2015 Jun; 23(11):13761-75. PubMed ID: 26072748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comparative Study of Land Cover Classification by Using Multispectral and Texture Data.
    Qadri S; Khan DM; Ahmad F; Qadri SF; Babar ME; Shahid M; Ul-Rehman M; Razzaq A; Shah Muhammad S; Fahad M; Ahmad S; Pervez MT; Naveed N; Aslam N; Jamil M; Rehmani EA; Ahmad N; Akhtar Khan N
    Biomed Res Int; 2016; 2016():8797438. PubMed ID: 27376088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fusion of Hyperspectral CASI and Airborne LiDAR Data for Ground Object Classification through Residual Network.
    Chang Z; Yu H; Zhang Y; Wang K
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Urban Tree Species Classification Using a WorldView-2/3 and LiDAR Data Fusion Approach and Deep Learning.
    Hartling S; Sagan V; Sidike P; Maimaitijiang M; Carron J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30875732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling vegetation understory cover using LiDAR metrics.
    Venier LA; Swystun T; Mazerolle MJ; Kreutzweiser DP; Wainio-Keizer KL; McIlwrick KA; Woods ME; Wang X
    PLoS One; 2019; 14(11):e0220096. PubMed ID: 31774813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping and exploring variation in post-fire vegetation recovery following mixed severity wildfire using airborne LiDAR.
    Gordon CE; Price OF; Tasker EM
    Ecol Appl; 2017 Jul; 27(5):1618-1632. PubMed ID: 28390084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lidar detection of underwater objects using a neuro-SVM-based architecture.
    Mitra V; Wang CJ; Banerjee S
    IEEE Trans Neural Netw; 2006 May; 17(3):717-31. PubMed ID: 16722175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of Hyperspectral Single Photon Lidar for Robust Autonomous Vehicle Perception.
    Taher J; Hakala T; Jaakkola A; Hyyti H; Kukko A; Manninen P; Maanpää J; Hyyppä J
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GIS based mapping of land cover changes utilizing multi-temporal remotely sensed image data in Lake Hawassa Watershed, Ethiopia.
    Nigatu Wondrade ; Dick ØB; Tveite H
    Environ Monit Assess; 2014 Mar; 186(3):1765-80. PubMed ID: 24310365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Accuracy evaluation of land vegetative cover index by RS detection].
    Zhou Z; Wu G; Shao G
    Ying Yong Sheng Tai Xue Bao; 2004 Jan; 15(1):36-8. PubMed ID: 15139183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Object based classification of a riparian environment using ultra-high resolution imagery, hierarchical landcover structures, and image texture.
    Kutz K; Cook Z; Linderman M
    Sci Rep; 2022 Jul; 12(1):11291. PubMed ID: 35789170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring habitat preserves in southern California using high spatial resolution multispectral imagery.
    Coulter LL; Stow DA
    Environ Monit Assess; 2009 May; 152(1-4):343-56. PubMed ID: 18500452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Analysis of vegetation spatial and temporal variations in Qinghai Province based on remote sensing].
    Wang LW; Wei YX; Niu Z
    Huan Jing Ke Xue; 2008 Jun; 29(6):1754-60. PubMed ID: 18763535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Representative landscapes in the forested area of Canada.
    Cardille JA; White JC; Wulder MA; Holland T
    Environ Manage; 2012 Jan; 49(1):163-73. PubMed ID: 22109729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vegetation structure parameters determine high burn severity likelihood in different ecosystem types: A case study in a burned Mediterranean landscape.
    Fernández-Guisuraga JM; Suárez-Seoane S; García-Llamas P; Calvo L
    J Environ Manage; 2021 Jun; 288():112462. PubMed ID: 33831636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.