These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30356820)

  • 1. Intrinsic Rewards for Maintenance, Approach, Avoidance, and Achievement Goal Types.
    Dhakan P; Merrick K; Rañó I; Siddique N
    Front Neurorobot; 2018; 12():63. PubMed ID: 30356820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular deep reinforcement learning from reward and punishment for robot navigation.
    Wang J; Elfwing S; Uchibe E
    Neural Netw; 2021 Mar; 135():115-126. PubMed ID: 33383526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-Inspired Autonomous Learning Algorithm With Application to Mobile Robot Obstacle Avoidance.
    Liu J; Hua Y; Yang R; Luo Y; Lu H; Wang Y; Yang S; Ding X
    Front Neurosci; 2022; 16():905596. PubMed ID: 35844210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinforcement Learning for Improving Agent Design.
    Ha D
    Artif Life; 2019; 25(4):352-365. PubMed ID: 31697584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A formal methods approach to interpretable reinforcement learning for robotic planning.
    Li X; Serlin Z; Yang G; Belta C
    Sci Robot; 2019 Dec; 4(37):. PubMed ID: 33137718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-Arm Robot Trajectory Planning Based on Deep Reinforcement Learning under Complex Environment.
    Tang W; Cheng C; Ai H; Chen L
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open-Ended Learning: A Conceptual Framework Based on Representational Redescription.
    Doncieux S; Filliat D; Díaz-Rodríguez N; Hospedales T; Duro R; Coninx A; Roijers DM; Girard B; Perrin N; Sigaud O
    Front Neurorobot; 2018; 12():59. PubMed ID: 30319388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular inverse reinforcement learning for visuomotor behavior.
    Rothkopf CA; Ballard DH
    Biol Cybern; 2013 Aug; 107(4):477-90. PubMed ID: 23832417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LJIR: Learning Joint-Action Intrinsic Reward in cooperative multi-agent reinforcement learning.
    Chen Z; Luo B; Hu T; Xu X
    Neural Netw; 2023 Oct; 167():450-459. PubMed ID: 37683459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finding intrinsic rewards by embodied evolution and constrained reinforcement learning.
    Uchibe E; Doya K
    Neural Netw; 2008 Dec; 21(10):1447-55. PubMed ID: 19013054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovering and Exploiting Sparse Rewards in a Learned Behavior Space.
    Paolo G; Coninx M; Laflaquière A; Doncieux S
    Evol Comput; 2023 Oct; ():1-28. PubMed ID: 37793063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MOSAIC for multiple-reward environments.
    Sugimoto N; Haruno M; Doya K; Kawato M
    Neural Comput; 2012 Mar; 24(3):577-606. PubMed ID: 22168558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weak Human Preference Supervision for Deep Reinforcement Learning.
    Cao Z; Wong K; Lin CT
    IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5369-5378. PubMed ID: 34101604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Koopman Operator-Based Knowledge-Guided Reinforcement Learning for Safe Human-Robot Interaction.
    Sinha A; Wang Y
    Front Robot AI; 2022; 9():779194. PubMed ID: 35783024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Multi-Dimensional Goal Aircraft Guidance Approach Based on Reinforcement Learning with a Reward Shaping Algorithm.
    Zu W; Yang H; Liu R; Ji Y
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavior fusion for deep reinforcement learning.
    Shi H; Xu M; Hwang KS; Cai BY
    ISA Trans; 2020 Mar; 98():434-444. PubMed ID: 31543262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast reinforcement learning with generalized policy updates.
    Barreto A; Hou S; Borsa D; Silver D; Precup D
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30079-30087. PubMed ID: 32817541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incremental learning of skill collections based on intrinsic motivation.
    Metzen JH; Kirchner F
    Front Neurorobot; 2013; 7():11. PubMed ID: 23898265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.