These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 30356893)
1. Anaerobic lignocellulolytic microbial consortium derived from termite gut: enrichment, lignocellulose degradation and community dynamics. Lazuka A; Auer L; O'Donohue M; Hernandez-Raquet G Biotechnol Biofuels; 2018; 11():284. PubMed ID: 30356893 [TBL] [Abstract][Full Text] [Related]
2. Uncovering the Potential of Termite Gut Microbiome for Lignocellulose Bioconversion in Anaerobic Batch Bioreactors. Auer L; Lazuka A; Sillam-Dussès D; Miambi E; O'Donohue M; Hernandez-Raquet G Front Microbiol; 2017; 8():2623. PubMed ID: 29312279 [TBL] [Abstract][Full Text] [Related]
3. Efficient anaerobic transformation of raw wheat straw by a robust cow rumen-derived microbial consortium. Lazuka A; Auer L; Bozonnet S; Morgavi DP; O'Donohue M; Hernandez-Raquet G Bioresour Technol; 2015 Nov; 196():241-9. PubMed ID: 26247975 [TBL] [Abstract][Full Text] [Related]
4. Enhanced methane production from wheat straw with the assistance of lignocellulolytic microbial consortium TC-5. Kong X; Du J; Ye X; Xi Y; Jin H; Zhang M; Guo D Bioresour Technol; 2018 Sep; 263():33-39. PubMed ID: 29729539 [TBL] [Abstract][Full Text] [Related]
5. Host-Specific Diversity of Culturable Bacteria in the Gut Systems of Fungus-Growing Termites and Their Potential Functions towards Lignocellulose Bioconversion. Xie R; Dong C; Wang S; Danso B; Dar MA; Pandit RS; Pawar KD; Geng A; Zhu D; Li X; Xu Q; Sun J Insects; 2023 Apr; 14(4):. PubMed ID: 37103218 [TBL] [Abstract][Full Text] [Related]
6. A holobiont approach towards polysaccharide degradation by the highly compartmentalised gut system of the soil-feeding higher termite Labiotermes labralis. Marynowska M; Sillam-Dussès D; Untereiner B; Klimek D; Goux X; Gawron P; Roisin Y; Delfosse P; Calusinska M BMC Genomics; 2023 Mar; 24(1):115. PubMed ID: 36922761 [TBL] [Abstract][Full Text] [Related]
7. Compositional and functional characterisation of biomass-degrading microbial communities in guts of plant fibre- and soil-feeding higher termites. Marynowska M; Goux X; Sillam-Dussès D; Rouland-Lefèvre C; Halder R; Wilmes P; Gawron P; Roisin Y; Delfosse P; Calusinska M Microbiome; 2020 Jun; 8(1):96. PubMed ID: 32576253 [TBL] [Abstract][Full Text] [Related]
8. Lignocellulolytic Potential of Microbial Consortia Isolated from a Local Biogas Plant: The Case of Thermostable Xylanases Secreted by Mesophilic Bacteria. Bombardi L; Salini A; Aulitto M; Zuliani L; Andreolli M; Bordoli P; Coltro A; Vitulo N; Zaccone C; Lampis S; Fusco S Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38256164 [TBL] [Abstract][Full Text] [Related]
9. Multi-omic Directed Discovery of Cellulosomes, Polysaccharide Utilization Loci, and Lignocellulases from an Enriched Rumen Anaerobic Consortium. Tomazetto G; Pimentel AC; Wibberg D; Dixon N; Squina FM Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32680862 [TBL] [Abstract][Full Text] [Related]
10. Screening of Phytophagous and Xylophagous Insects Guts Microbiota Abilities to Degrade Lignocellulose in Bioreactor. Gales A; Chatellard L; Abadie M; Bonnafous A; Auer L; Carrère H; Godon JJ; Hernandez-Raquet G; Dumas C Front Microbiol; 2018; 9():2222. PubMed ID: 30337907 [TBL] [Abstract][Full Text] [Related]
12. Tripartite Symbiotic Digestion of Lignocellulose in the Digestive System of a Fungus-Growing Termite. Ahmad F; Yang G; Zhu Y; Poulsen M; Li W; Yu T; Mo J Microbiol Spectr; 2022 Dec; 10(6):e0123422. PubMed ID: 36250871 [TBL] [Abstract][Full Text] [Related]
13. Origin, Selection, and Succession of Coastal Intertidal Zone-Derived Bacterial Communities Associated with the Degradation of Various Lignocellulose Substrates. Ma W; Lin L; Peng Q Microb Ecol; 2023 Oct; 86(3):1589-1603. PubMed ID: 36717391 [TBL] [Abstract][Full Text] [Related]
14. Unlocking the potential of insect and ruminant host symbionts for recycling of lignocellulosic carbon with a biorefinery approach: a review. Rajeswari G; Jacob S; Chandel AK; Kumar V Microb Cell Fact; 2021 May; 20(1):107. PubMed ID: 34044834 [TBL] [Abstract][Full Text] [Related]
15. Top-Down Enrichment Guides in Formation of Synthetic Microbial Consortia for Biomass Degradation. Gilmore SP; Lankiewicz TS; Wilken SE; Brown JL; Sexton JA; Henske JK; Theodorou MK; Valentine DL; O'Malley MA ACS Synth Biol; 2019 Sep; 8(9):2174-2185. PubMed ID: 31461261 [TBL] [Abstract][Full Text] [Related]
16. Metagenomic analysis of gut microbiome illuminates the mechanisms and evolution of lignocellulose degradation in mangrove herbivorous crabs. Hui TKL; Lo ICN; Wong KKW; Tsang CTT; Tsang LM BMC Microbiol; 2024 Feb; 24(1):57. PubMed ID: 38350856 [TBL] [Abstract][Full Text] [Related]
17. Bacterial species metabolic interaction network for deciphering the lignocellulolytic system in fungal cultivating termite gut microbiota. Kundu P; Mondal S; Ghosh A Biosystems; 2022 Nov; 221():104763. PubMed ID: 36029916 [TBL] [Abstract][Full Text] [Related]
18. Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia. Jiménez DJ; Dini-Andreote F; van Elsas JD Biotechnol Biofuels; 2014; 7():92. PubMed ID: 24955113 [TBL] [Abstract][Full Text] [Related]
19. Targeted metatranscriptomics of compost-derived consortia reveals a GH11 exerting an unusual exo-1,4-β-xylanase activity. Mello BL; Alessi AM; Riaño-Pachón DM; deAzevedo ER; Guimarães FEG; Espirito Santo MC; McQueen-Mason S; Bruce NC; Polikarpov I Biotechnol Biofuels; 2017; 10():254. PubMed ID: 29118851 [TBL] [Abstract][Full Text] [Related]
20. Ecofriendly lignocellulose pretreatment to enhance the carboxylate production of a rumen-derived microbial consortium. Lazuka A; Roland C; Barakat A; Guillon F; O'Donohue M; Hernandez-Raquet G Bioresour Technol; 2017 Jul; 236():225-233. PubMed ID: 28412647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]