These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 30356893)
21. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Ni J; Tokuda G Biotechnol Adv; 2013 Nov; 31(6):838-50. PubMed ID: 23623853 [TBL] [Abstract][Full Text] [Related]
22. Metagenomic and metaproteomic analyses of a corn stover-adapted microbial consortium EMSD5 reveal its taxonomic and enzymatic basis for degrading lignocellulose. Zhu N; Yang J; Ji L; Liu J; Yang Y; Yuan H Biotechnol Biofuels; 2016; 9():243. PubMed ID: 27833656 [TBL] [Abstract][Full Text] [Related]
23. Genome-scale community modeling for deciphering the inter-microbial metabolic interactions in fungus-farming termite gut microbiome. Kundu P; Ghosh A Comput Biol Med; 2023 Mar; 154():106600. PubMed ID: 36739820 [TBL] [Abstract][Full Text] [Related]
24. Optimization of a metatranscriptomic approach to study the lignocellulolytic potential of the higher termite gut microbiome. Marynowska M; Goux X; Sillam-Dussès D; Rouland-Lefèvre C; Roisin Y; Delfosse P; Calusinska M BMC Genomics; 2017 Sep; 18(1):681. PubMed ID: 28863779 [TBL] [Abstract][Full Text] [Related]
25. Species-wide Metabolic Interaction Network for Understanding Natural Lignocellulose Digestion in Termite Gut Microbiota. Kundu P; Manna B; Majumder S; Ghosh A Sci Rep; 2019 Nov; 9(1):16329. PubMed ID: 31705042 [TBL] [Abstract][Full Text] [Related]
26. Different inocula produce distinctive microbial consortia with similar lignocellulose degradation capacity. Cortes-Tolalpa L; Jiménez DJ; de Lima Brossi MJ; Salles JF; van Elsas JD Appl Microbiol Biotechnol; 2016 Sep; 100(17):7713-25. PubMed ID: 27170322 [TBL] [Abstract][Full Text] [Related]
27. Exploring the region-wise diversity and functions of symbiotic bacteria in the gut system of wood-feeding termite, Coptotermes formosanus, toward the degradation of cellulose, hemicellulose, and organic dyes. Dar MA; Xie R; Pandit RS; Danso B; Dong C; Sun J Insect Sci; 2022 Oct; 29(5):1414-1432. PubMed ID: 35134272 [TBL] [Abstract][Full Text] [Related]
28. Mining the biomass deconstructing capabilities of rice yellow stem borer symbionts. Singh R; Bennett JP; Gupta M; Sharma M; Eqbal D; Alessi AM; Dowle AA; McQueen-Mason SJ; Bruce NC; Yazdani SS Biotechnol Biofuels; 2019; 12():265. PubMed ID: 31719844 [TBL] [Abstract][Full Text] [Related]
29. Biotechnological utilization of animal gut microbiota for valorization of lignocellulosic biomass. Ozbayram EG; Kleinsteuber S; Nikolausz M Appl Microbiol Biotechnol; 2020 Jan; 104(2):489-508. PubMed ID: 31797006 [TBL] [Abstract][Full Text] [Related]
30. Characterization and identification of a novel microbial consortium M2 and its effect on fermentation quality and enzymatic hydrolysis of sterile rice straw. Li J; Ding H; Zhao J; Wang S; Dong Z; Shao T J Appl Microbiol; 2022 Mar; 132(3):1687-1699. PubMed ID: 34662476 [TBL] [Abstract][Full Text] [Related]
31. A new screened microbial consortium OEM2 for lignocellulosic biomass deconstruction and chlorophenols detoxification. Liang J; Fang X; Lin Y; Wang D J Hazard Mater; 2018 Apr; 347():341-348. PubMed ID: 29335216 [TBL] [Abstract][Full Text] [Related]
35. Unveiling lignocellulolytic potential: a genomic exploration of bacterial lineages within the termite gut. Salgado JFM; Hervé V; Vera MAG; Tokuda G; Brune A Microbiome; 2024 Oct; 12(1):201. PubMed ID: 39407345 [TBL] [Abstract][Full Text] [Related]
36. Functional characterization of thermotolerant microbial consortium for lignocellulolytic enzymes with central role of Firmicutes in rice straw depolymerization. Gavande PV; Basak A; Sen S; Lepcha K; Murmu N; Rai V; Mazumdar D; Saha SP; Das V; Ghosh S Sci Rep; 2021 Feb; 11(1):3032. PubMed ID: 33542396 [TBL] [Abstract][Full Text] [Related]
37. Enrichment of thermophilic and mesophilic microbial consortia for efficient degradation of corn stalk. Lu J; Yang Z; Xu W; Shi X; Guo R J Environ Sci (China); 2019 Apr; 78():118-126. PubMed ID: 30665630 [TBL] [Abstract][Full Text] [Related]
38. Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes. Romero Victorica M; Soria MA; Batista-García RA; Ceja-Navarro JA; Vikram S; Ortiz M; Ontañon O; Ghio S; Martínez-Ávila L; Quintero García OJ; Etcheverry C; Campos E; Cowan D; Arneodo J; Talia PM Sci Rep; 2020 Mar; 10(1):3864. PubMed ID: 32123275 [TBL] [Abstract][Full Text] [Related]
39. Metasecretome analysis of a lignocellulolytic microbial consortium grown on wheat straw, xylan and xylose. Jiménez DJ; Maruthamuthu M; van Elsas JD Biotechnol Biofuels; 2015; 8():199. PubMed ID: 26628913 [TBL] [Abstract][Full Text] [Related]
40. Whole genome sequencing and the lignocellulose degradation potential of Bacillus subtilis RLI2019 isolated from the intestine of termites. Liu G; Zhang K; Gong H; Yang K; Wang X; Zhou G; Cui W; Chen Y; Yang Y Biotechnol Biofuels Bioprod; 2023 Aug; 16(1):130. PubMed ID: 37598218 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]