These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 30357117)

  • 1. Quantitative imaging of lipid droplets in single cells.
    Gupta A; Dorlhiac GF; Streets AM
    Analyst; 2019 Jan; 144(3):753-765. PubMed ID: 30357117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells.
    Potcoava MC; Futia GL; Aughenbaugh J; Schlaepfer IR; Gibson EA
    J Biomed Opt; 2014; 19(11):111605. PubMed ID: 24933682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of coherent Raman scattering microscopies to clinical and biological studies.
    Schie IW; Krafft C; Popp J
    Analyst; 2015 Jun; 140(12):3897-909. PubMed ID: 25811305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Spatiotemporal Chemical Profiling of Individual Lipid Droplets by Hyperspectral CARS Microscopy in Living Human Adipose-Derived Stem Cells.
    Di Napoli C; Pope I; Masia F; Langbein W; Watson P; Borri P
    Anal Chem; 2016 Apr; 88(7):3677-85. PubMed ID: 26937957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman microscopy-based quantification of the physical properties of intracellular lipids.
    Uematsu M; Shimizu T
    Commun Biol; 2021 Oct; 4(1):1176. PubMed ID: 34625633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid Droplet Composition Varies Based on Medaka Fish Eggs Development as Revealed by NIR-, MIR-, and Raman Imaging.
    Bik E; Ishigaki M; Blat A; Jasztal A; Ozaki Y; Malek K; Baranska M
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32070018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable isotope-labeled Raman imaging reveals dynamic proteome localization to lipid droplets in single fission yeast cells.
    Noothalapati Venkata HN; Shigeto S
    Chem Biol; 2012 Nov; 19(11):1373-80. PubMed ID: 23177192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-Free Digital Quantification of Lipid Droplets in Single Cells by Stimulated Raman Microscopy on a Microfluidic Platform.
    Cao C; Zhou D; Chen T; Streets AM; Huang Y
    Anal Chem; 2016 May; 88(9):4931-9. PubMed ID: 27041129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells.
    Steuwe C; Patel II; Ul-Hasan M; Schreiner A; Boren J; Brindle KM; Reichelt S; Mahajan S
    J Biophotonics; 2014 Nov; 7(11-12):906-13. PubMed ID: 24343869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging of lipids in microalgae with coherent anti-stokes Raman scattering microscopy.
    Cavonius L; Fink H; Kiskis J; Albers E; Undeland I; Enejder A
    Plant Physiol; 2015 Mar; 167(3):603-16. PubMed ID: 25583924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperspectral imaging and characterization of live cells by broadband coherent anti-Stokes Raman scattering (CARS) microscopy with singular value decomposition (SVD) analysis.
    Khmaladze A; Jasensky J; Price E; Zhang C; Boughton A; Han X; Seeley E; Liu X; Banaszak Holl MM; Chen Z
    Appl Spectrosc; 2014; 68(10):1116-22. PubMed ID: 25198903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissecting lipid droplet biology with coherent Raman scattering microscopy.
    Chen T; Yavuz A; Wang MC
    J Cell Sci; 2022 Mar; 135(5):. PubMed ID: 33975358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New automated single-cell technique for segmentation and quantitation of lipid droplets.
    Dejgaard SY; Presley JF
    J Histochem Cytochem; 2014 Dec; 62(12):889-901. PubMed ID: 25246387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulated Raman Scattering Imaging Sheds New Light on Lipid Droplet Biology.
    Jia H; Yue S
    J Phys Chem B; 2023 Mar; 127(11):2381-2394. PubMed ID: 36897936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-Free Imaging of Lipid Droplets in Prostate Cells Using Stimulated Raman Scattering Microscopy and Multivariate Analysis.
    Hislop EW; Tipping WJ; Faulds K; Graham D
    Anal Chem; 2022 Jun; 94(25):8899-8908. PubMed ID: 35699644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disentangling dynamic changes of multiple cellular components during the yeast cell cycle by in vivo multivariate Raman imaging.
    Huang CK; Ando M; Hamaguchi HO; Shigeto S
    Anal Chem; 2012 Jul; 84(13):5661-8. PubMed ID: 22686107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Lipid Droplet Content in Fission and Budding Yeasts using Automated Image Processing.
    Princová J; Schätz M; Ťupa O; Převorovský M
    J Vis Exp; 2019 Jul; (149):. PubMed ID: 31380845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplex coherent anti-stokes Raman spectroscopy images intact atheromatous lesions and concomitantly identifies distinct chemical profiles of atherosclerotic lipids.
    Kim SH; Lee ES; Lee JY; Lee ES; Lee BS; Park JE; Moon DW
    Circ Res; 2010 Apr; 106(8):1332-41. PubMed ID: 20299664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering single cell metabolism by coherent Raman scattering microscopy.
    Yue S; Cheng JX
    Curr Opin Chem Biol; 2016 Aug; 33():46-57. PubMed ID: 27288951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward Single-Organelle Lipidomics in Live Cells.
    Lita A; Kuzmin AN; Pliss A; Baev A; Rzhevskii A; Gilbert MR; Larion M; Prasad PN
    Anal Chem; 2019 Sep; 91(17):11380-11387. PubMed ID: 31381322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.