BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30357163)

  • 1. Dynamics changes of CRISPR-Cas9 systems induced by high fidelity mutations.
    Zheng L; Shi J; Mu Y
    Phys Chem Chem Phys; 2018 Nov; 20(43):27439-27448. PubMed ID: 30357163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.
    Hruscha A; Krawitz P; Rechenberg A; Heinrich V; Hecht J; Haass C; Schmid B
    Development; 2013 Dec; 140(24):4982-7. PubMed ID: 24257628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes.
    Ma E; Harrington LB; O'Connell MR; Zhou K; Doudna JA
    Mol Cell; 2015 Nov; 60(3):398-407. PubMed ID: 26545076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.
    Kleinstiver BP; Pattanayak V; Prew MS; Tsai SQ; Nguyen NT; Zheng Z; Joung JK
    Nature; 2016 Jan; 529(7587):490-5. PubMed ID: 26735016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-Mutation-Induced Conformational Changes of the DNA and Nuclease Domain in CRISPR/Cas9 Systems by Molecular Dynamics Simulations.
    Ray A; Di Felice R
    J Phys Chem B; 2020 Mar; 124(11):2168-2179. PubMed ID: 32079396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus.
    Steinert J; Schiml S; Fauser F; Puchta H
    Plant J; 2015 Dec; 84(6):1295-305. PubMed ID: 26576927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases.
    Cho SW; Kim S; Kim Y; Kweon J; Kim HS; Bae S; Kim JS
    Genome Res; 2014 Jan; 24(1):132-41. PubMed ID: 24253446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fusion of SpCas9 to E. coli Rec A protein enhances CRISPR-Cas9 mediated gene knockout in mammalian cells.
    Lin L; Petersen TS; Jensen KT; Bolund L; Kühn R; Luo Y
    J Biotechnol; 2017 Apr; 247():42-49. PubMed ID: 28259533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells.
    Kim D; Kim J; Hur JK; Been KW; Yoon SH; Kim JS
    Nat Biotechnol; 2016 Aug; 34(8):863-8. PubMed ID: 27272384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The application of CRISPR-Cas9 genome editing in Caenorhabditis elegans.
    Xu S
    J Genet Genomics; 2015 Aug; 42(8):413-21. PubMed ID: 26336798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time observation of flexible domain movements in CRISPR-Cas9.
    Osuka S; Isomura K; Kajimoto S; Komori T; Nishimasu H; Shima T; Nureki O; Uemura S
    EMBO J; 2018 May; 37(10):. PubMed ID: 29650679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of CRISPR/Cas9 activity in plants, animals and microbes.
    Bortesi L; Zhu C; Zischewski J; Perez L; Bassié L; Nadi R; Forni G; Lade SB; Soto E; Jin X; Medina V; Villorbina G; Muñoz P; Farré G; Fischer R; Twyman RM; Capell T; Christou P; Schillberg S
    Plant Biotechnol J; 2016 Dec; 14(12):2203-2216. PubMed ID: 27614091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RICE CRISPR: Rapidly increased cut ends by an exonuclease Cas9 fusion in zebrafish.
    Clements TP; Tandon B; Lintel HA; McCarty JH; Wagner DS
    Genesis; 2017 Aug; 55(8):. PubMed ID: 28653435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of CRISPR-Cas9 genome interrogation in living cells.
    Knight SC; Xie L; Deng W; Guglielmi B; Witkowsky LB; Bosanac L; Zhang ET; El Beheiry M; Masson JB; Dahan M; Liu Z; Doudna JA; Tjian R
    Science; 2015 Nov; 350(6262):823-6. PubMed ID: 26564855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bidirectional Degradation of DNA Cleavage Products Catalyzed by CRISPR/Cas9.
    Stephenson AA; Raper AT; Suo Z
    J Am Chem Soc; 2018 Mar; 140(10):3743-3750. PubMed ID: 29461055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing the natural diversity and in vitro evolution of Cas9 to expand the genome editing toolbox.
    Karvelis T; Gasiunas G; Siksnys V
    Curr Opin Microbiol; 2017 Jun; 37():88-94. PubMed ID: 28645099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity.
    Nguyen DP; Miyaoka Y; Gilbert LA; Mayerl SJ; Lee BH; Weissman JS; Conklin BR; Wells JA
    Nat Commun; 2016 Jul; 7():12009. PubMed ID: 27363581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage.
    Kulcsár PI; Tálas A; Huszár K; Ligeti Z; Tóth E; Weinhardt N; Fodor E; Welker E
    Genome Biol; 2017 Oct; 18(1):190. PubMed ID: 28985763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in therapeutic CRISPR/Cas9 genome editing.
    Savić N; Schwank G
    Transl Res; 2016 Feb; 168():15-21. PubMed ID: 26470680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.