These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 30357202)

  • 1. Atomistic determination of the surface structure of Cu
    Zhang R; Li L; Frazer L; Chang KB; Poeppelmeier KR; Chan MKY; Guest JR
    Phys Chem Chem Phys; 2018 Nov; 20(43):27456-27463. PubMed ID: 30357202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxide Nanocrystal Model Catalysts.
    Huang W
    Acc Chem Res; 2016 Mar; 49(3):520-7. PubMed ID: 26938790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trimethylaluminum and Oxygen Atomic Layer Deposition on Hydroxyl-Free Cu(111).
    Gharachorlou A; Detwiler MD; Gu XK; Mayr L; Klötzer B; Greeley J; Reifenberger RG; Delgass WN; Ribeiro FH; Zemlyanov DY
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16428-39. PubMed ID: 26158796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomistic Origins of Surface Defects in CH
    Liu Y; Palotas K; Yuan X; Hou T; Lin H; Li Y; Lee ST
    ACS Nano; 2017 Feb; 11(2):2060-2065. PubMed ID: 28125775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective molecular adsorption in sub-nanometer cages of a Cu2O surface oxide.
    Mudiyanselage K; An W; Yang F; Liu P; Stacchiola DJ
    Phys Chem Chem Phys; 2013 Jul; 15(26):10726-31. PubMed ID: 23685717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfaces of complex intermetallic compounds: insights from density functional calculations.
    Hafner J; Krajčí M
    Acc Chem Res; 2014 Nov; 47(11):3378-84. PubMed ID: 24741993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-principles predictions of the structure, stability, and photocatalytic potential of Cu2O surfaces.
    Bendavid LI; Carter EA
    J Phys Chem B; 2013 Dec; 117(49):15750-60. PubMed ID: 24138294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of substitutional doping on Cu vacancy formation in Cu
    Beronio ERA; Colambo IR; Padama AAB
    Phys Chem Chem Phys; 2021 Apr; 23(14):8800-8808. PubMed ID: 33876039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging Catalytic Activation of CO
    Li L; Zhang R; Vinson J; Shirley EL; Greeley JP; Guest JR; Chan MKY
    Chem Mater; 2018; 30():. PubMed ID: 31080315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small energy gap revealed in CrBr
    Baral D; Fu Z; Zadorozhnyi AS; Dulal R; Wang A; Shrestha N; Erugu U; Tang J; Dahnovsky Y; Tian J; Chien T
    Phys Chem Chem Phys; 2021 Feb; 23(5):3225-3232. PubMed ID: 33325931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The p-type conduction mechanism in Cu2O: a first principles study.
    Nolan M; Elliott SD
    Phys Chem Chem Phys; 2006 Dec; 8(45):5350-8. PubMed ID: 19810413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic-Scale Structure of the Hematite α-Fe
    Kraushofer F; Jakub Z; Bichler M; Hulva J; Drmota P; Weinold M; Schmid M; Setvin M; Diebold U; Blaha P; Parkinson GS
    J Phys Chem C Nanomater Interfaces; 2018 Jan; 122(3):1657-1669. PubMed ID: 29492182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A DFT study of adsorption of imidazole, triazole, and tetrazole on oxidized copper surfaces: Cu₂O(111) and Cu₂O(111)-w/o-CuCUS.
    Gustinčič D; Kokalj A
    Phys Chem Chem Phys; 2015 Nov; 17(43):28602-15. PubMed ID: 26443103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorrect DFT-GGA predictions of the stability of non-stoichiometric/polar dielectric surfaces: the case of Cu2O(111).
    Nilius N; Fedderwitz H; Groß B; Noguera C; Goniakowski J
    Phys Chem Chem Phys; 2016 Mar; 18(9):6729-33. PubMed ID: 26876056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Termination-dependent electronic structure and atomic-scale screening behavior of the Cu
    Gloystein A; Nilius N; Noguera C; Goniakowski J
    J Phys Condens Matter; 2021 Sep; 33(48):. PubMed ID: 34500440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic and Electronic Structure of the BaTiO(3)(001) (sqrt[5] × sqrt[5])R26.6° Surface Reconstruction.
    Martirez JM; Morales EH; Saidi WA; Bonnell DA; Rappe AM
    Phys Rev Lett; 2012 Dec; 109(25):256802. PubMed ID: 23368487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction mechanisms of the CuO(111) surface through surface oxygen vacancy formation and hydrogen adsorption.
    Maimaiti Y; Nolan M; Elliott SD
    Phys Chem Chem Phys; 2014 Feb; 16(7):3036-46. PubMed ID: 24394338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic Structure and Ferromagnetism Modulation in Cu/Cu2O Interface: Impact of Interfacial Cu Vacancy and Its Diffusion.
    Li HB; Wang W; Xie X; Cheng Y; Zhang Z; Dong H; Zheng R; Wang WH; Lu F; Liu H
    Sci Rep; 2015 Oct; 5():15191. PubMed ID: 26478505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling Surface Termination and Facet Orientation in Cu
    Su Y; Li H; Ma H; Robertson J; Nathan A
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8100-8106. PubMed ID: 28206739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single CuO/Cu
    Lupan O; Ababii N; Mishra AK; Gronenberg O; Vahl A; Schürmann U; Duppel V; Krüger H; Chow L; Kienle L; Faupel F; Adelung R; de Leeuw NH; Hansen S
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42248-42263. PubMed ID: 32813500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.