These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Atomistic Origins of Surface Defects in CH Liu Y; Palotas K; Yuan X; Hou T; Lin H; Li Y; Lee ST ACS Nano; 2017 Feb; 11(2):2060-2065. PubMed ID: 28125775 [TBL] [Abstract][Full Text] [Related]
5. Selective molecular adsorption in sub-nanometer cages of a Cu2O surface oxide. Mudiyanselage K; An W; Yang F; Liu P; Stacchiola DJ Phys Chem Chem Phys; 2013 Jul; 15(26):10726-31. PubMed ID: 23685717 [TBL] [Abstract][Full Text] [Related]
6. Surfaces of complex intermetallic compounds: insights from density functional calculations. Hafner J; Krajčí M Acc Chem Res; 2014 Nov; 47(11):3378-84. PubMed ID: 24741993 [TBL] [Abstract][Full Text] [Related]
7. First-principles predictions of the structure, stability, and photocatalytic potential of Cu2O surfaces. Bendavid LI; Carter EA J Phys Chem B; 2013 Dec; 117(49):15750-60. PubMed ID: 24138294 [TBL] [Abstract][Full Text] [Related]
8. The effects of substitutional doping on Cu vacancy formation in Cu Beronio ERA; Colambo IR; Padama AAB Phys Chem Chem Phys; 2021 Apr; 23(14):8800-8808. PubMed ID: 33876039 [TBL] [Abstract][Full Text] [Related]
10. Small energy gap revealed in CrBr Baral D; Fu Z; Zadorozhnyi AS; Dulal R; Wang A; Shrestha N; Erugu U; Tang J; Dahnovsky Y; Tian J; Chien T Phys Chem Chem Phys; 2021 Feb; 23(5):3225-3232. PubMed ID: 33325931 [TBL] [Abstract][Full Text] [Related]
11. The p-type conduction mechanism in Cu2O: a first principles study. Nolan M; Elliott SD Phys Chem Chem Phys; 2006 Dec; 8(45):5350-8. PubMed ID: 19810413 [TBL] [Abstract][Full Text] [Related]
12. Atomic-Scale Structure of the Hematite α-Fe Kraushofer F; Jakub Z; Bichler M; Hulva J; Drmota P; Weinold M; Schmid M; Setvin M; Diebold U; Blaha P; Parkinson GS J Phys Chem C Nanomater Interfaces; 2018 Jan; 122(3):1657-1669. PubMed ID: 29492182 [TBL] [Abstract][Full Text] [Related]
13. A DFT study of adsorption of imidazole, triazole, and tetrazole on oxidized copper surfaces: Cu₂O(111) and Cu₂O(111)-w/o-CuCUS. Gustinčič D; Kokalj A Phys Chem Chem Phys; 2015 Nov; 17(43):28602-15. PubMed ID: 26443103 [TBL] [Abstract][Full Text] [Related]
14. Incorrect DFT-GGA predictions of the stability of non-stoichiometric/polar dielectric surfaces: the case of Cu2O(111). Nilius N; Fedderwitz H; Groß B; Noguera C; Goniakowski J Phys Chem Chem Phys; 2016 Mar; 18(9):6729-33. PubMed ID: 26876056 [TBL] [Abstract][Full Text] [Related]
15. Termination-dependent electronic structure and atomic-scale screening behavior of the Cu Gloystein A; Nilius N; Noguera C; Goniakowski J J Phys Condens Matter; 2021 Sep; 33(48):. PubMed ID: 34500440 [TBL] [Abstract][Full Text] [Related]
16. Atomic and Electronic Structure of the BaTiO(3)(001) (sqrt[5] × sqrt[5])R26.6° Surface Reconstruction. Martirez JM; Morales EH; Saidi WA; Bonnell DA; Rappe AM Phys Rev Lett; 2012 Dec; 109(25):256802. PubMed ID: 23368487 [TBL] [Abstract][Full Text] [Related]
17. Reduction mechanisms of the CuO(111) surface through surface oxygen vacancy formation and hydrogen adsorption. Maimaiti Y; Nolan M; Elliott SD Phys Chem Chem Phys; 2014 Feb; 16(7):3036-46. PubMed ID: 24394338 [TBL] [Abstract][Full Text] [Related]
18. Electronic Structure and Ferromagnetism Modulation in Cu/Cu2O Interface: Impact of Interfacial Cu Vacancy and Its Diffusion. Li HB; Wang W; Xie X; Cheng Y; Zhang Z; Dong H; Zheng R; Wang WH; Lu F; Liu H Sci Rep; 2015 Oct; 5():15191. PubMed ID: 26478505 [TBL] [Abstract][Full Text] [Related]
19. Controlling Surface Termination and Facet Orientation in Cu Su Y; Li H; Ma H; Robertson J; Nathan A ACS Appl Mater Interfaces; 2017 Mar; 9(9):8100-8106. PubMed ID: 28206739 [TBL] [Abstract][Full Text] [Related]