BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30357219)

  • 1. Self-filling microwell arrays (SFMAs) for tumor spheroid formation.
    Seyfoori A; Samiei E; Jalili N; Godau B; Rahmanian M; Farahmand L; Majidzadeh-A K; Akbari M
    Lab Chip; 2018 Nov; 18(22):3516-3528. PubMed ID: 30357219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids.
    Ma LD; Wang YT; Wang JR; Wu JL; Meng XS; Hu P; Mu X; Liang QL; Luo GA
    Lab Chip; 2018 Aug; 18(17):2547-2562. PubMed ID: 30019731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic force-assisted self-locking metallic bead array for fabrication of diverse concave microwell geometries.
    Lee GH; Park YE; Cho M; Park H; Park JY
    Lab Chip; 2016 Sep; 16(18):3565-75. PubMed ID: 27509885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of agarose concave petridish for 3D-culture microarray method for spheroids formation of hepatic cells.
    Zhang B; Li Y; Wang G; Jia Z; Li H; Peng Q; Gao Y
    J Mater Sci Mater Med; 2018 Apr; 29(5):49. PubMed ID: 29675647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mask-free fabrication of a versatile microwell chip for multidimensional cellular analysis and drug screening.
    Yang W; Yu H; Li G; Wei F; Wang Y; Liu L
    Lab Chip; 2017 Dec; 17(24):4243-4252. PubMed ID: 29152631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of Uniform 3D Microtumors in Hydrogel Microwell Arrays for Measurement of Viability, Morphology, and Signaling Pathway Activation.
    Singh M; Close DA; Mukundan S; Johnston PA; Sant S
    Assay Drug Dev Technol; 2015 Nov; 13(9):570-83. PubMed ID: 26274587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of Multicellular Tumor Spheroids with Microwell-Based Agarose Scaffolds for Drug Testing.
    Gong X; Lin C; Cheng J; Su J; Zhao H; Liu T; Wen X; Zhao P
    PLoS One; 2015; 10(6):e0130348. PubMed ID: 26090664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D hydrogel-based microwell arrays as a tumor microenvironment model to study breast cancer growth.
    Casey J; Yue X; Nguyen TD; Acun A; Zellmer VR; Zhang S; Zorlutuna P
    Biomed Mater; 2017 Mar; 12(2):025009. PubMed ID: 28143999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of PNIPAm-based thermoresponsive hydrogel microwell arrays for tumor spheroid formation.
    Dhamecha D; Le D; Chakravarty T; Perera K; Dutta A; Menon JU
    Mater Sci Eng C Mater Biol Appl; 2021 Jun; 125():112100. PubMed ID: 33965110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Printed Stamps for the Fabrication of Patterned Microwells and High-Throughput Production of Homogeneous Cell Spheroids.
    Gonzalez-Fernandez T; Tenorio AJ; Leach JK
    3D Print Addit Manuf; 2020 Jun; 7(3):139-147. PubMed ID: 32855996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed positioning of single cells in microwells fabricated by scanning probe lithography and wet etching methods.
    Choi I; Yang YI; Kim YJ; Kim Y; Hahn JS; Choi K; Yi J
    Langmuir; 2008 Mar; 24(6):2597-602. PubMed ID: 18225920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced oxygen permeability in membrane-bottomed concave microwells for the formation of pancreatic islet spheroids.
    Lee G; Jun Y; Jang H; Yoon J; Lee J; Hong M; Chung S; Kim DH; Lee S
    Acta Biomater; 2018 Jan; 65():185-196. PubMed ID: 29101017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Networked concave microwell arrays for constructing 3D cell spheroids.
    Lee GH; Lee JS; Lee GH; Joung WY; Kim SH; Lee SH; Park JY; Kim DH
    Biofabrication; 2017 Nov; 10(1):015001. PubMed ID: 29190216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of omega-shaped microwell arrays for a spheroid culture platform using pins of a commercial CPU to minimize cell loss and crosstalk.
    Kim K; Kim SH; Lee GH; Park JY
    Biofabrication; 2018 Aug; 10(4):045003. PubMed ID: 30074487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alginate gel microwell arrays using electrodeposition for three-dimensional cell culture.
    Ozawa F; Ino K; Arai T; Ramón-Azcón J; Takahashi Y; Shiku H; Matsue T
    Lab Chip; 2013 Aug; 13(15):3128-35. PubMed ID: 23764965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel cylindrical microwell featuring inverted-pyramidal opening for efficient cell spheroid formation without cell loss.
    Cha JM; Park H; Shin EK; Sung JH; Kim O; Jung W; Bang OY; Kim J
    Biofabrication; 2017 Aug; 9(3):035006. PubMed ID: 28726681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced micromachining of concave microwells for long term on-chip culture of multicellular tumor spheroids.
    Liu T; Chien CC; Parkinson L; Thierry B
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8090-7. PubMed ID: 24773458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of size-controlled glioma spheroids using agarose hydrogel microwells.
    Mirab F; Kang YJ; Majd S
    PLoS One; 2019; 14(1):e0211078. PubMed ID: 30677075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple microsphere-based mold to rapidly fabricate microwell arrays for multisize 3D tumor culture.
    Li Z; Guo X; Sun L; Xu J; Liu W; Li T; Wang J
    Biotechnol Bioeng; 2020 Apr; 117(4):1092-1100. PubMed ID: 31868229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.