BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 30357328)

  • 1. Droplet-based microfluidics as a future tool for strain improvement in lactic acid bacteria.
    Chen J; Vestergaard M; Shen J; Solem C; Dufva M; Jensen PR
    FEMS Microbiol Lett; 2018 Dec; 365(23):. PubMed ID: 30357328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finding the Needle in the Haystack-the Use of Microfluidic Droplet Technology to Identify Vitamin-Secreting Lactic Acid Bacteria.
    Chen J; Vestergaard M; Jensen TG; Shen J; Dufva M; Solem C; Jensen PR
    mBio; 2017 May; 8(3):. PubMed ID: 28559484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomics of lactic acid bacteria: Current status and potential applications.
    Wu C; Huang J; Zhou R
    Crit Rev Microbiol; 2017 Aug; 43(4):393-404. PubMed ID: 28502225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactic acid bacteria: from starter cultures to producers of chemicals.
    Hatti-Kaul R; Chen L; Dishisha T; Enshasy HE
    FEMS Microbiol Lett; 2018 Oct; 365(20):. PubMed ID: 30169778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering as a tool for enhanced lactic acid production.
    Upadhyaya BP; DeVeaux LC; Christopher LP
    Trends Biotechnol; 2014 Dec; 32(12):637-44. PubMed ID: 25457813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel mutagenesis and screening technologies for food microorganisms: advances and prospects.
    Yu Q; Li Y; Wu B; Hu W; He M; Hu G
    Appl Microbiol Biotechnol; 2020 Feb; 104(4):1517-1531. PubMed ID: 31919586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet Microfluidics for Microbial Biotechnology.
    Hengoju S; Tovar M; Man DKW; Buchheim S; Rosenbaum MA
    Adv Biochem Eng Biotechnol; 2022; 179():129-157. PubMed ID: 32888037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring cellular metabolism in lactic acid bacteria through metabolic engineering.
    Sharma A; Gupta G; Ahmad T; Kaur B; Hakeem KR
    J Microbiol Methods; 2020 Mar; 170():105862. PubMed ID: 32032637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Throughput Microfluidics for the Screening of Yeast Libraries.
    Huang M; Joensson HN; Nielsen J
    Methods Mol Biol; 2018; 1671():307-317. PubMed ID: 29170967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technology and safety assessment for lactic acid bacteria isolated from traditional Bulgarian fermented meat product "lukanka".
    Todorov SD; Stojanovski S; Iliev I; Moncheva P; Nero LA; Ivanova IV
    Braz J Microbiol; 2017; 48(3):576-586. PubMed ID: 28552660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards high-throughput genome engineering in lactic acid bacteria.
    Rothstein SM; Sen S; Mansell TJ
    Curr Opin Biotechnol; 2020 Feb; 61():181-188. PubMed ID: 31986469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial profile of lactic acid bacteria isolated from vegetables and indigenous fermented foods of India against clinical pathogens using microdilution method.
    Patel A; Shah N; Ambalam P; Prajapati JB; Holst O; Ljungh A
    Biomed Environ Sci; 2013 Sep; 26(9):759-64. PubMed ID: 24099610
    [No Abstract]   [Full Text] [Related]  

  • 13. Droplet-based microfluidics for high-throughput screening of a metagenomic library for isolation of microbial enzymes.
    Hosokawa M; Hoshino Y; Nishikawa Y; Hirose T; Yoon DH; Mori T; Sekiguchi T; Shoji S; Takeyama H
    Biosens Bioelectron; 2015 May; 67():379-85. PubMed ID: 25194237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-based selection and application of food-grade microbes for chickpea milk fermentation towards increased L-lysine content, elimination of indigestible sugars, and improved flavour.
    Tangyu M; Fritz M; Aragao-Börner R; Ye L; Bogicevic B; Bolten CJ; Wittmann C
    Microb Cell Fact; 2021 May; 20(1):109. PubMed ID: 34049541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactic Acid Bacteria Exopolysaccharides in Foods and Beverages: Isolation, Properties, Characterization, and Health Benefits.
    Lynch KM; Zannini E; Coffey A; Arendt EK
    Annu Rev Food Sci Technol; 2018 Mar; 9():155-176. PubMed ID: 29580141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic evolution of domesticated microorganisms.
    Douglas GL; Klaenhammer TR
    Annu Rev Food Sci Technol; 2010; 1():397-414. PubMed ID: 22129342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Droplet-based microfluidic platform for high-throughput screening of Streptomyces.
    Tu R; Zhang Y; Hua E; Bai L; Huang H; Yun K; Wang M
    Commun Biol; 2021 May; 4(1):647. PubMed ID: 34059751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exopolysaccharide producing lactic acid bacteria: Their techno-functional role and potential application in gluten-free bread products.
    Lynch KM; Coffey A; Arendt EK
    Food Res Int; 2018 Aug; 110():52-61. PubMed ID: 30029706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotechnological and in situ food production of polyols by lactic acid bacteria.
    Ortiz ME; Bleckwedel J; Raya RR; Mozzi F
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4713-26. PubMed ID: 23604535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of lactic acid bacteria and yeasts, and characterization of food components of sourdoughs used in Japanese bakeries.
    Fujimoto A; Ito K; Narushima N; Miyamoto T
    J Biosci Bioeng; 2019 May; 127(5):575-581. PubMed ID: 30392963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.