These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 30357419)

  • 1. Active site residue identity regulates cleavage preference of LAGLIDADG homing endonucleases.
    McMurrough TA; Brown CM; Zhang K; Hausner G; Junop MS; Gloor GB; Edgell DR
    Nucleic Acids Res; 2018 Dec; 46(22):11990-12007. PubMed ID: 30357419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modifying a covarying protein-DNA interaction changes substrate preference of a site-specific endonuclease.
    Laforet M; McMurrough TA; Vu M; Brown CM; Zhang K; Junop MS; Gloor GB; Edgell DR
    Nucleic Acids Res; 2019 Nov; 47(20):10830-10841. PubMed ID: 31602462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analysis of active-site residues in the Mycobacterium leprae RecA intein, a LAGLIDADG homing endonuclease: Asp(122) and Asp(193) are crucial to the double-stranded DNA cleavage activity whereas Asp(218) is not.
    Singh P; Tripathi P; Muniyappa K
    Protein Sci; 2010 Jan; 19(1):111-23. PubMed ID: 19937653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Structural Basis of Asymmetry in DNA Binding and Cleavage as Exhibited by the I-SmaMI LAGLIDADG Meganuclease.
    Shen BW; Lambert A; Walker BC; Stoddard BL; Kaiser BK
    J Mol Biol; 2016 Jan; 428(1):206-220. PubMed ID: 26705195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple substitutions lead to increased loop flexibility and expanded specificity in
    Harper TM; June CM; Taracila MA; Bonomo RA; Powers RA; Leonard DA
    Biochem J; 2018 Jan; 475(1):273-288. PubMed ID: 29229762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural dissection of sequence recognition and catalytic mechanism of human LINE-1 endonuclease.
    Miller I; Totrov M; Korotchkina L; Kazyulkin DN; Gudkov AV; Korolev S
    Nucleic Acids Res; 2021 Nov; 49(19):11350-11366. PubMed ID: 34554261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly active enzymes by automated combinatorial backbone assembly and sequence design.
    Lapidoth G; Khersonsky O; Lipsh R; Dym O; Albeck S; Rogotner S; Fleishman SJ
    Nat Commun; 2018 Jul; 9(1):2780. PubMed ID: 30018322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PI-PfuI and PI-PfuII, intein-coded homing endonucleases from Pyrococcus furiosus. II. Characterization Of the binding and cleavage abilities by site-directed mutagenesis.
    Komori K; Ichiyanagi K; Morikawa K; Ishino Y
    Nucleic Acids Res; 1999 Nov; 27(21):4175-82. PubMed ID: 10518608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Reaction Mechanism of Metallo-β-Lactamases Is Tuned by the Conformation of an Active-Site Mobile Loop.
    Palacios AR; Mojica MF; Giannini E; Taracila MA; Bethel CR; Alzari PM; Otero LH; Klinke S; Llarrull LI; Bonomo RA; Vila AJ
    Antimicrob Agents Chemother; 2019 Jan; 63(1):. PubMed ID: 30348667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid evolution of the DNA-binding site in LAGLIDADG homing endonucleases.
    Lucas P; Otis C; Mercier JP; Turmel M; Lemieux C
    Nucleic Acids Res; 2001 Feb; 29(4):960-9. PubMed ID: 11160929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of I-DmoI in complex with its target DNA provides new insights into meganuclease engineering.
    Marcaida MJ; Prieto J; Redondo P; Nadra AD; Alibés A; Serrano L; Grizot S; Duchateau P; Pâques F; Blanco FJ; Montoya G
    Proc Natl Acad Sci U S A; 2008 Nov; 105(44):16888-93. PubMed ID: 18974222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering and flow-cytometric analysis of chimeric LAGLIDADG homing endonucleases from homologous I-OnuI-family enzymes.
    Baxter SK; Scharenberg AM; Lambert AR
    Methods Mol Biol; 2014; 1123():191-221. PubMed ID: 24510269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selectively Modulating Conformational States of USP7 Catalytic Domain for Activation.
    Özen A; Rougé L; Bashore C; Hearn BR; Skelton NJ; Dueber EC
    Structure; 2018 Jan; 26(1):72-84.e7. PubMed ID: 29249604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of new homing endonuclease specificities at individual target site positions.
    Sussman D; Chadsey M; Fauce S; Engel A; Bruett A; Monnat R; Stoddard BL; Seligman LM
    J Mol Biol; 2004 Sep; 342(1):31-41. PubMed ID: 15313605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of customized meganucleases via in vitro compartmentalization and in cellulo optimization.
    Takeuchi R; Choi M; Stoddard BL
    Methods Mol Biol; 2015; 1239():105-32. PubMed ID: 25408403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational redesign of endonuclease DNA binding and cleavage specificity.
    Ashworth J; Havranek JJ; Duarte CM; Sussman D; Monnat RJ; Stoddard BL; Baker D
    Nature; 2006 Jun; 441(7093):656-9. PubMed ID: 16738662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA binding strength increases the processivity and activity of a Y-Family DNA polymerase.
    Wu J; de Paz A; Zamft BM; Marblestone AH; Boyden ES; Kording KP; Tyo KEJ
    Sci Rep; 2017 Jul; 7(1):4756. PubMed ID: 28684739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redesign of extensive protein-DNA interfaces of meganucleases using iterative cycles of in vitro compartmentalization.
    Takeuchi R; Choi M; Stoddard BL
    Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4061-6. PubMed ID: 24591643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering domain fusion chimeras from I-OnuI family LAGLIDADG homing endonucleases.
    Baxter S; Lambert AR; Kuhar R; Jarjour J; Kulshina N; Parmeggiani F; Danaher P; Gano J; Baker D; Stoddard BL; Scharenberg AM
    Nucleic Acids Res; 2012 Sep; 40(16):7985-8000. PubMed ID: 22684507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational reprogramming of homing endonuclease specificity at multiple adjacent base pairs.
    Ashworth J; Taylor GK; Havranek JJ; Quadri SA; Stoddard BL; Baker D
    Nucleic Acids Res; 2010 Sep; 38(16):5601-8. PubMed ID: 20435674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.