BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 30357503)

  • 1. Triple deletion of clpC, porB, and mepA enhances production of small ubiquitin-like modifier-N-terminal pro-brain natriuretic peptide in Corynebacterium glutamicum.
    Peng F; Liu X; Wang X; Chen J; Liu M; Yang Y; Bai Z
    J Ind Microbiol Biotechnol; 2019 Jan; 46(1):67-79. PubMed ID: 30357503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system.
    Peng F; Wang X; Sun Y; Dong G; Yang Y; Liu X; Bai Z
    Microb Cell Fact; 2017 Nov; 16(1):201. PubMed ID: 29137643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum.
    Jiang Y; Qian F; Yang J; Liu Y; Dong F; Xu C; Sun B; Chen B; Xu X; Li Y; Wang R; Yang S
    Nat Commun; 2017 May; 8():15179. PubMed ID: 28469274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification, repair and characterization of a benzyl alcohol-inducible promoter for recombinant proteins overexpression in Corynebacterium glutamicum.
    Liu X; Zhao Z; Dong G; Li Y; Peng F; Liu C; Zhang F; Linhardt RJ; Yang Y; Bai Z
    Enzyme Microb Technol; 2020 Nov; 141():109651. PubMed ID: 33051010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplex gene editing and large DNA fragment deletion by the CRISPR/Cpf1-RecE/T system in Corynebacterium glutamicum.
    Zhao N; Li L; Luo G; Xie S; Lin Y; Han S; Huang Y; Zheng S
    J Ind Microbiol Biotechnol; 2020 Aug; 47(8):599-608. PubMed ID: 32876764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic investigation of CRISPR-Cas9 configurations for flexible and efficient genome editing in Corynebacterium glutamicum NRRL-B11474.
    Cameron Coates R; Blaskowski S; Szyjka S; van Rossum HM; Vallandingham J; Patel K; Serber Z; Dean J
    J Ind Microbiol Biotechnol; 2019 Feb; 46(2):187-201. PubMed ID: 30484125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined genome editing and transcriptional repression for metabolic pathway engineering in Corynebacterium glutamicum using a catalytically active Cas12a.
    Liu W; Tang D; Wang H; Lian J; Huang L; Xu Z
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):8911-8922. PubMed ID: 31583448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
    Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T
    Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing a CRISPR-Cpf1-based genome engineering system for Corynebacterium glutamicum.
    Zhang J; Yang F; Yang Y; Jiang Y; Huo YX
    Microb Cell Fact; 2019 Mar; 18(1):60. PubMed ID: 30909908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Base Genome Editing in
    Kim HJ; Oh SY; Lee SJ
    J Microbiol Biotechnol; 2020 Oct; 30(10):1583-1591. PubMed ID: 32807756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of CRISPR-Cas9 through promoter replacement and efficient production of L-homoserine in Corynebacterium glutamicum.
    Li N; Wang M; Yu S; Zhou J
    Biotechnol J; 2021 Aug; 16(8):e2100093. PubMed ID: 34018325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Advances in gene editing of Corynebacterium glutamate].
    Yang J; Ma X; Wang X; Zhang Z; Wang S; Qin H; Mao S; Lu F
    Sheng Wu Gong Cheng Xue Bao; 2020 May; 36(5):820-828. PubMed ID: 32567265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

  • 15. Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi).
    Cleto S; Jensen JV; Wendisch VF; Lu TK
    ACS Synth Biol; 2016 May; 5(5):375-85. PubMed ID: 26829286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A CRISPR-Cpf1-Assisted Non-Homologous End Joining Genome Editing System of Mycobacterium smegmatis.
    Sun B; Yang J; Yang S; Ye RD; Chen D; Jiang Y
    Biotechnol J; 2018 Sep; 13(9):e1700588. PubMed ID: 30039929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR interference-mediated metabolic engineering of Corynebacterium glutamicum for homo-butyrate production.
    Yoon J; Woo HM
    Biotechnol Bioeng; 2018 Aug; 115(8):2067-2074. PubMed ID: 29704438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome engineering of Clostridium difficile using the CRISPR-Cas9 system.
    Wang S; Hong W; Dong S; Zhang ZT; Zhang J; Wang L; Wang Y
    Clin Microbiol Infect; 2018 Oct; 24(10):1095-1099. PubMed ID: 29604353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced production of D-pantothenic acid in Corynebacterium glutamicum using an efficient CRISPR-Cpf1 genome editing method.
    Su R; Wang T; Bo T; Cai N; Yuan M; Wu C; Jiang H; Peng H; Chen N; Li Y
    Microb Cell Fact; 2023 Jan; 22(1):3. PubMed ID: 36609377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.