BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 30357503)

  • 21. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum.
    Cho JS; Choi KR; Prabowo CPS; Shin JH; Yang D; Jang J; Lee SY
    Metab Eng; 2017 Jul; 42():157-167. PubMed ID: 28649005
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid identification of unknown carboxyl esterase activity in Corynebacterium glutamicum using RNA-guided CRISPR interference.
    Lee SS; Shin H; Jo S; Lee SM; Um Y; Woo HM
    Enzyme Microb Technol; 2018 Jul; 114():63-68. PubMed ID: 29685355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Establishment of CRISPR-Cpf1-assisted gene editing tool and engineering of 4-hydroxyisoleucine biosynthesis in Corynebacterium glutamicum.
    Chen R; Shi F; Xiang Y; Lai W; Ji G
    World J Microbiol Biotechnol; 2023 Aug; 39(10):266. PubMed ID: 37524856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Optimization of base editing in Corynebacterium glutamicum].
    Li J; Liu Y; Wang Y; Yu P; Zheng P; Wang M
    Sheng Wu Gong Cheng Xue Bao; 2020 Jan; 36(1):143-151. PubMed ID: 32072789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Optimization of CRISPR/Cas9-based multiplex base editing in
    Lu H; Zhang Q; Yu S; Wang Y; Kang M; Han S; Liu Y; Wang M
    Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):780-795. PubMed ID: 35234398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a high-copy-number plasmid via adaptive laboratory evolution of Corynebacterium glutamicum.
    Choi JW; Yim SS; Jeong KJ
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):873-883. PubMed ID: 29177939
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR/Cas12a Mediated Genome Editing To Introduce Amino Acid Substitutions into the Mechanosensitive Channel MscCG of
    Krumbach K; Sonntag CK; Eggeling L; Marienhagen J
    ACS Synth Biol; 2019 Dec; 8(12):2726-2734. PubMed ID: 31790583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K; Cai D; Wang Z; He Z; Chen S
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178
    [No Abstract]   [Full Text] [Related]  

  • 29. Construction and application of an efficient multiple-gene-deletion system in Corynebacterium glutamicum.
    Hu J; Tan Y; Li Y; Hu X; Xu D; Wang X
    Plasmid; 2013 Nov; 70(3):303-13. PubMed ID: 23856168
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MACBETH: Multiplex automated Corynebacterium glutamicum base editing method.
    Wang Y; Liu Y; Liu J; Guo Y; Fan L; Ni X; Zheng X; Wang M; Zheng P; Sun J; Ma Y
    Metab Eng; 2018 May; 47():200-210. PubMed ID: 29580925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain.
    Park J; Shin H; Lee SM; Um Y; Woo HM
    Microb Cell Fact; 2018 Jan; 17(1):4. PubMed ID: 29316926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome Editing of Corynebacterium glutamicum Using CRISPR-Cpf1 System.
    Wen Z; Qian F; Zhang J; Jiang Y; Yang S
    Methods Mol Biol; 2022; 2479():189-206. PubMed ID: 35583740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR/Cas9-mediated ssDNA Recombineering in
    Liu J; Wang Y; Zheng P; Sun J
    Bio Protoc; 2018 Oct; 8(19):e3038. PubMed ID: 34532515
    [No Abstract]   [Full Text] [Related]  

  • 35. Expanding targeting scope, editing window, and base transition capability of base editing in Corynebacterium glutamicum.
    Wang Y; Liu Y; Li J; Yang Y; Ni X; Cheng H; Huang T; Guo Y; Ma H; Zheng P; Wang M; Sun J; Ma Y
    Biotechnol Bioeng; 2019 Nov; 116(11):3016-3029. PubMed ID: 31317533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces.
    Huang H; Zheng G; Jiang W; Hu H; Lu Y
    Acta Biochim Biophys Sin (Shanghai); 2015 Apr; 47(4):231-43. PubMed ID: 25739462
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene editing in clinical isolates of Candida parapsilosis using CRISPR/Cas9.
    Lombardi L; Turner SA; Zhao F; Butler G
    Sci Rep; 2017 Aug; 7(1):8051. PubMed ID: 28808289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Construction of pOGOduet - An inducible, bicistronic vector for synthesis of recombinant proteins in Corynebacterium glutamicum.
    Goldbeck O; Seibold GM
    Plasmid; 2018 Jan; 95():11-15. PubMed ID: 29331350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterologous Production of Squalene from Glucose in Engineered Corynebacterium glutamicum Using Multiplex CRISPR Interference and High-Throughput Fermentation.
    Park J; Yu BJ; Choi JI; Woo HM
    J Agric Food Chem; 2019 Jan; 67(1):308-319. PubMed ID: 30558416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction and application of a CRISPR/Cas9-assisted genomic editing system for Corynebacterium glutamicum.
    Yao C; Hu X; Wang X
    AMB Express; 2021 May; 11(1):70. PubMed ID: 34009533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.