BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 30357617)

  • 21. Musculoskeletal Tissue Engineering Using Fibrous Biomaterials.
    Tan G; Zhou Y; Sooriyaarachchi D
    Methods Mol Biol; 2021; 2193():31-40. PubMed ID: 32808256
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of bioactive electrospun scaffolds for bone tissue engineering.
    Cirillo V; Guarino V; Ambrosio L
    J Appl Biomater Funct Mater; 2012; 10(3):223-8. PubMed ID: 23242869
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scaffolds Fabricated from Natural Polymers/Composites by Electrospinning for Bone Tissue Regeneration.
    Sofi HS; Ashraf R; Beigh MA; Sheikh FA
    Adv Exp Med Biol; 2018; 1078():49-78. PubMed ID: 30357618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators.
    Wang L; Wu Y; Hu T; Guo B; Ma PX
    Acta Biomater; 2017 Sep; 59():68-81. PubMed ID: 28663141
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of nanofibrous electrospun scaffolds from a heterogeneous library of co- and self-assembling peptides.
    Maleki M; Natalello A; Pugliese R; Gelain F
    Acta Biomater; 2017 Mar; 51():268-278. PubMed ID: 28093364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced osteogenic differentiation with 3D electrospun nanofibrous scaffolds.
    Nguyen LT; Liao S; Chan CK; Ramakrishna S
    Nanomedicine (Lond); 2012 Oct; 7(10):1561-75. PubMed ID: 22709343
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrospun fibers for dental and craniofacial applications.
    Li G; Zhang T; Li M; Fu N; Fu Y; Ba K; Deng S; Jiang Y; Hu J; Peng Q; Lin Y
    Curr Stem Cell Res Ther; 2014 May; 9(3):187-95. PubMed ID: 24524795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advances in skin regeneration: application of electrospun scaffolds.
    Norouzi M; Boroujeni SM; Omidvarkordshouli N; Soleimani M
    Adv Healthc Mater; 2015 Jun; 4(8):1114-33. PubMed ID: 25721694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advances in electrospun scaffolds for meniscus tissue engineering and regeneration.
    Wang X; Ding Y; Li H; Mo X; Wu J
    J Biomed Mater Res B Appl Biomater; 2022 Apr; 110(4):923-949. PubMed ID: 34619021
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrospun materials as potential platforms for bone tissue engineering.
    Jang JH; Castano O; Kim HW
    Adv Drug Deliv Rev; 2009 Oct; 61(12):1065-83. PubMed ID: 19646493
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biologically improved nanofibrous scaffolds for cardiac tissue engineering.
    Bhaarathy V; Venugopal J; Gandhimathi C; Ponpandian N; Mangalaraj D; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering.
    Xu T; Miszuk JM; Zhao Y; Sun H; Fong H
    Adv Healthc Mater; 2015 Oct; 4(15):2238-46. PubMed ID: 26332611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling.
    Chen Y; Zeng D; Ding L; Li XL; Liu XT; Li WJ; Wei T; Yan S; Xie JH; Wei L; Zheng QS
    BMC Cell Biol; 2015 Sep; 16():22. PubMed ID: 26335746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells.
    Kai D; Jin G; Prabhakaran MP; Ramakrishna S
    Biotechnol J; 2013 Jan; 8(1):59-72. PubMed ID: 23139231
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering.
    Jia L; Prabhakaran MP; Qin X; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4640-50. PubMed ID: 24094171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nano-fibrous tissue engineering scaffolds capable of growth factor delivery.
    Hu J; Ma PX
    Pharm Res; 2011 Jun; 28(6):1273-81. PubMed ID: 21234657
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering.
    Jin G; Prabhakaran MP; Ramakrishna S
    Acta Biomater; 2011 Aug; 7(8):3113-22. PubMed ID: 21550425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering.
    Rodrigues MT; Martins A; Dias IR; Viegas CA; Neves NM; Gomes ME; Reis RL
    J Tissue Eng Regen Med; 2012 Nov; 6(10):e24-30. PubMed ID: 22451140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pore shape and size dependence on cell growth into electrospun fiber scaffolds for tissue engineering: 2D and 3D analyses using SEM and FIB-SEM tomography.
    Stachewicz U; Szewczyk PK; Kruk A; Barber AH; Czyrska-Filemonowicz A
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():397-408. PubMed ID: 30573264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.