These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 30357699)

  • 21. Materials fabrication from Bombyx mori silk fibroin.
    Rockwood DN; Preda RC; Yücel T; Wang X; Lovett ML; Kaplan DL
    Nat Protoc; 2011 Sep; 6(10):1612-31. PubMed ID: 21959241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A flexible and biocompatible bombyx mori silk fibroin/wool keratin composite scaffold with interconnective porous structure.
    Tian Y; Wu Q; Li F; Zhou Y; Huang D; Xie R; Wang X; Zheng Z; Li G
    Colloids Surf B Biointerfaces; 2021 Dec; 208():112080. PubMed ID: 34481247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flexible Water-Absorbing Silk-Fibroin Biomaterial Sponges with Unique Pore Structure for Tissue Engineering.
    Liu J; Chen H; Wang Y; Li G; Zheng Z; Kaplan DL; Wang X; Wang X
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1641-1649. PubMed ID: 33455369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Silk fibroin/hydroxyapatite composites for bone tissue engineering.
    Farokhi M; Mottaghitalab F; Samani S; Shokrgozar MA; Kundu SC; Reis RL; Fatahi Y; Kaplan DL
    Biotechnol Adv; 2018; 36(1):68-91. PubMed ID: 28993220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of Composite Scaffold Containing Silk Fibroin, Chitosan, and Gelatin for 3D Cell Culture and Bone Tissue Regeneration.
    Li J; Wang Q; Gu Y; Zhu Y; Chen L; Chen Y
    Med Sci Monit; 2017 Nov; 23():5311-5320. PubMed ID: 29114098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D Printing of Antibacterial, Biocompatible, and Biomimetic Hybrid Aerogel-Based Scaffolds with Hierarchical Porosities via Integrating Antibacterial Peptide-Modified Silk Fibroin with Silica Nanostructure.
    Karamat-Ullah N; Demidov Y; Schramm M; Grumme D; Auer J; Bohr C; Brachvogel B; Maleki H
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4545-4556. PubMed ID: 34415718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application potential of three-dimensional silk fibroin scaffold using mesenchymal stem cells for cardiac regeneration.
    Cetin Y; Sahin MG; Kok FN
    J Biomater Appl; 2021 Oct; 36(4):740-753. PubMed ID: 34039082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Silk-based biomaterials.
    Altman GH; Diaz F; Jakuba C; Calabro T; Horan RL; Chen J; Lu H; Richmond J; Kaplan DL
    Biomaterials; 2003 Feb; 24(3):401-16. PubMed ID: 12423595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silk fibroin aerogels: potential scaffolds for tissue engineering applications.
    Mallepally RR; Marin MA; Surampudi V; Subia B; Rao RR; Kundu SC; McHugh MA
    Biomed Mater; 2015 May; 10(3):035002. PubMed ID: 25953953
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bombyx mori derived scaffolds and their use in cartilage regeneration: a systematic review.
    Fazal N; Latief N
    Osteoarthritis Cartilage; 2018 Dec; 26(12):1583-1594. PubMed ID: 30059787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stem cell-based tissue engineering with silk biomaterials.
    Wang Y; Kim HJ; Vunjak-Novakovic G; Kaplan DL
    Biomaterials; 2006 Dec; 27(36):6064-82. PubMed ID: 16890988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The determinant role of fabrication technique in final characteristics of scaffolds for tissue engineering applications: A focus on silk fibroin-based scaffolds.
    Khademolqorani S; Tavanai H; Chronakis IS; Boisen A; Ajalloueian F
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111867. PubMed ID: 33641889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of the Adherence of Dental Pulp Stem Cells on Two-Dimensional and Three-Dimensional Silk Fibroin-Based Biomaterials.
    Pecci-Lloret MP; Vera-Sánchez M; Aznar-Cervantes S; García-Bernal D; Sánchez RO; Pecci-Lloret MR; Moraleda JM; Cenis JL; Rodríguez-Lozano FJ
    J Craniofac Surg; 2017 Jun; 28(4):939-943. PubMed ID: 28230598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/silk fibroin film is a promising scaffold for bone tissue engineering.
    Ang SL; Shaharuddin B; Chuah JA; Sudesh K
    Int J Biol Macromol; 2020 Feb; 145():173-188. PubMed ID: 31866541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-Assembly of Bombyx mori Silk Fibroin.
    Kong N
    Methods Mol Biol; 2021; 2347():69-82. PubMed ID: 34472056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Silk Fibroin Combined with Electrospinning as a Promising Strategy for Tissue Regeneration.
    Chen K; Li Y; Li Y; Pan W; Tan G
    Macromol Biosci; 2023 Feb; 23(2):e2200380. PubMed ID: 36409150
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Research advances on the application of silk fibroin biomaterials in wound repair].
    Ding ZZ; Lyu J
    Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi; 2022 Oct; 38(10):973-977. PubMed ID: 36299211
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Progress and prospect of electrospun silk fibroin in construction of tissue-engineering scaffold].
    Chen L; Zhu Y; Li Y; Liu Y; Yu J
    Sheng Wu Gong Cheng Xue Bao; 2011 Jun; 27(6):831-7. PubMed ID: 22034811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization strategies for electrospun silk fibroin tissue engineering scaffolds.
    Meinel AJ; Kubow KE; Klotzsch E; Garcia-Fuentes M; Smith ML; Vogel V; Merkle HP; Meinel L
    Biomaterials; 2009 Jun; 30(17):3058-67. PubMed ID: 19233463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration.
    Ribeiro VP; da Silva Morais A; Maia FR; Canadas RF; Costa JB; Oliveira AL; Oliveira JM; Reis RL
    Acta Biomater; 2018 May; 72():167-181. PubMed ID: 29626700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.