These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30357731)

  • 41. Patch clamp study of mouse glomus cells using a whole carotid body.
    Yamaguchi S; Lande B; Kitajima T; Hori Y; Shirahata M
    Neurosci Lett; 2004 Mar; 357(2):155-7. PubMed ID: 15036598
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Expression of p11 and Heteromeric TASK Channels in Rat Carotid Body Glomus Cells and Nerve Growth Factor-differentiated PC12 Cells.
    Matsuoka H; Pokorski M; Harada K; Yoshimura R; Inoue M
    J Histochem Cytochem; 2020 Oct; 68(10):679-690. PubMed ID: 32886017
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of TASK-like K+ channels in oxygen sensing in the carotid body.
    Buckler KJ; Williams BA; Orozco RV; Wyatt CN
    Novartis Found Symp; 2006; 272():73-85; discussion 85-94, 131-40. PubMed ID: 16686430
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spermine attenuates carotid body glomus cell oxygen sensing by inhibiting L-type Ca²(+) channels.
    Cayzac SH; Rocher A; Obeso A; Gonzalez C; Riccardi D; Kemp PJ
    Respir Physiol Neurobiol; 2011 Jan; 175(1):80-9. PubMed ID: 20863914
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CaV3.2 T-type Ca2+ channels mediate the augmented calcium influx in carotid body glomus cells by chronic intermittent hypoxia.
    Makarenko VV; Ahmmed GU; Peng YJ; Khan SA; Nanduri J; Kumar GK; Fox AP; Prabhakar NR
    J Neurophysiol; 2016 Jan; 115(1):345-54. PubMed ID: 26561606
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells.
    Archer SL; Wu XC; Thébaud B; Nsair A; Bonnet S; Tyrrell B; McMurtry MS; Hashimoto K; Harry G; Michelakis ED
    Circ Res; 2004 Aug; 95(3):308-18. PubMed ID: 15217912
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel oxygen-sensitive potassium current in rat carotid body type I cells.
    Buckler KJ
    J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):649-62. PubMed ID: 9051577
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Expression of tandem P domain K+ channel, TREK-1, in the rat carotid body.
    Yamamoto Y; Taniguchi K
    J Histochem Cytochem; 2006 Apr; 54(4):467-72. PubMed ID: 16344329
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hypoxic responses of arterial chemoreceptors in rabbits are primarily mediated by leak K channels.
    Kobayashi N; Yamamoto Y
    Adv Exp Med Biol; 2010; 669():195-9. PubMed ID: 20217348
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Ca2+]i inhibition of K+ channels in canine pulmonary artery. Novel mechanism for hypoxia-induced membrane depolarization.
    Post JM; Gelband CH; Hume JR
    Circ Res; 1995 Jul; 77(1):131-9. PubMed ID: 7788871
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Possible Role of TRP Channels in Rat Glomus Cells.
    Kim I; Fite L; Donnelly DF; Kim JH; Carroll JL
    Adv Exp Med Biol; 2015; 860():227-32. PubMed ID: 26303485
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates the oxygen sensing type I (glomus) cells of rat carotid bodies via reduction of a background TASK-like K+ current.
    Xu F; Tse FW; Tse A
    J Neurochem; 2007 Jun; 101(5):1284-93. PubMed ID: 17498241
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Norepinephrine inhibits a toxin resistant Ca2+ current in carotid body glomus cells: evidence for a direct G protein mechanism.
    Overholt JL; Prabhakar NR
    J Neurophysiol; 1999 Jan; 81(1):225-33. PubMed ID: 9914283
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gene expression analyses reveal metabolic specifications in acute O
    Gao L; Bonilla-Henao V; García-Flores P; Arias-Mayenco I; Ortega-Sáenz P; López-Barneo J
    J Physiol; 2017 Sep; 595(18):6091-6120. PubMed ID: 28718507
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Serotonin-mediated modulation of hypoxia-induced intracellular calcium responses in glomus cells isolated from rat carotid body.
    Yokoyama T; Nakamuta N; Kusakabe T; Yamamoto Y
    Neurosci Lett; 2015 Jun; 597():149-53. PubMed ID: 25937361
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Selective inhibition of a slow-inactivating voltage-dependent K+ channel in rat PC12 cells by hypoxia.
    Conforti L; Millhorn DE
    J Physiol; 1997 Jul; 502 ( Pt 2)(Pt 2):293-305. PubMed ID: 9263911
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Perinatal hyperoxia exposure impairs hypoxia-induced depolarization in rat carotid body glomus cells.
    Kim I; Yang D; Carroll JL; Donnelly DF
    Respir Physiol Neurobiol; 2013 Aug; 188(1):9-14. PubMed ID: 23669494
    [TBL] [Abstract][Full Text] [Related]  

  • 58. TASK inhibition by mild acidosis increases Ca
    Kim D; Hogan JO; White C
    Am J Physiol Lung Cell Mol Physiol; 2023 Mar; 324(3):L259-L270. PubMed ID: 36692168
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Calcium channels of cultured rat glomus cells in normoxia and acute hypoxia.
    Jiang RG; Eyzaguirre C
    Brain Res; 2005 Jan; 1031(1):56-66. PubMed ID: 15621012
    [TBL] [Abstract][Full Text] [Related]  

  • 60. IL-1beta inhibits IK and increases [Ca2+]i in the carotid body glomus cells and increases carotid sinus nerve firings in the rat.
    Shu HF; Wang BR; Wang SR; Yao W; Huang HP; Zhou Z; Wang X; Fan J; Wang T; Ju G
    Eur J Neurosci; 2007 Jun; 25(12):3638-47. PubMed ID: 17610583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.